Model-Demo / libs /data.py
Mariam-Elz's picture
Upload libs/data.py with huggingface_hub
0f95337 verified
import numpy
import numpy as np
import torch
import os
import random
import pandas as pd
import os.path as osp
import PIL.Image as Image
from torch.utils.data import Dataset
from pathlib import Path
from imagedream.ldm.util import add_random_background
from imagedream.camera_utils import get_camera_for_index
from libs.base_utils import do_resize_content, add_stroke
import torchvision.transforms as transforms
def to_rgb_image(maybe_rgba: Image.Image):
if maybe_rgba.mode == "RGB":
return maybe_rgba
elif maybe_rgba.mode == "RGBA":
rgba = maybe_rgba
img = numpy.random.randint(
127, 128, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8
)
img = Image.fromarray(img, "RGB")
img.paste(rgba, mask=rgba.getchannel("A"))
return img
else:
raise ValueError("Unsupported image type.", maybe_rgba.mode)
def axis_rotate_xyz(img: Image.Image, rotate_axis="z", angle=90.0):
img = img.convert("RGB")
img = np.array(img) - 127
img = img.astype(np.float32)
# perform element-wise sin-cos rotation
if rotate_axis == "z":
img = np.stack(
[
img[..., 0] * np.cos(angle) - img[..., 1] * np.sin(angle),
img[..., 0] * np.sin(angle) + img[..., 1] * np.cos(angle),
img[..., 2],
],
-1,
)
elif rotate_axis == "y":
img = np.stack(
[
img[..., 0] * np.cos(angle) + img[..., 2] * np.sin(angle),
img[..., 1],
-img[..., 0] * np.sin(angle) + img[..., 2] * np.cos(angle),
],
-1,
)
elif rotate_axis == "x":
img = np.stack(
[
img[..., 0],
img[..., 1] * np.cos(angle) - img[..., 2] * np.sin(angle),
img[..., 1] * np.sin(angle) + img[..., 2] * np.cos(angle),
],
-1,
)
return Image.fromarray(img.astype(np.uint8) + 127)
class DataHQCRelative(Dataset):
"""
- base_dir
- uid1
- 000.png
- 001.png
- ...
- uid2
- xyz_base
- uid1
- xyz_new_000.png
- xyz_new_001.png
- ...
accepte caption data(in csv format)
"""
def __init__(
self,
base_dir,
caption_csv,
ref_indexs=[0],
ref_position=-1,
xyz_base=None,
camera_views=[3, 6, 9, 12, 15], # camera views are relative views, not abs
split="train",
image_size=256,
random_background=False,
resize_rate=1,
num_frames=5,
repeat=100,
outer_file=None,
debug=False,
eval_size=100,
):
print(__class__)
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
df = pd.read_csv(caption_csv, sep=",", names=["id", "caption"])
id_to_caption = {}
for i in range(len(df.index)):
item = df.iloc[i]
id_to_caption[item["id"]] = item["caption"]
# outer file is txt file, containing each ident per line, specific idents not included in the train process
outer_set = (
set(open(outer_file, "r").read().strip().split("\n"))
if outer_file is not None
else set()
)
xyz_set = set(os.listdir(xyz_base)) if xyz_base is not None else set()
common_keys = set(id_to_caption.keys()) & set(os.listdir(base_dir))
common_keys = common_keys & xyz_set if xyz_base is not None else common_keys
common_keys = common_keys - outer_set
self.common_keys = common_keys
self.id_to_caption = id_to_caption
final_dict = {key: id_to_caption[key] for key in common_keys}
self.image_size = image_size
self.base_dir = Path(base_dir)
self.xyz_base = xyz_base
self.repeat = repeat
self.num_frames = num_frames
self.camera_views = camera_views[:num_frames]
self.split = split
self.ref_indexs = ref_indexs
self.ref_position = ref_position
self.resize_rate = resize_rate
self.random_background = random_background
self.debug = debug
assert split in ["train", "eval"]
clip_size = 224
self.transfrom_clip = transforms.Compose(
[
transforms.Resize(
(clip_size, clip_size),
interpolation=Image.BICUBIC,
antialias="warn",
),
transforms.ToTensor(),
transforms.Normalize(mean=OPENAI_DATASET_MEAN, std=OPENAI_DATASET_STD),
]
)
self.transfrom_vae = transforms.Compose(
[
transforms.Resize((image_size, image_size)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
# 对于第i个视角作为参考时,左边,下面,背面,右边,上面,的图片名称index
import torchvision.transforms.functional as TF
from functools import partial as PA
self.index_mapping = [
# 正 左 下 背 右 上
[0, 1, 2, 3, 4, 5], # 0
[1, 3, 2, 4, 0, 5], # 1
[2, 1, 3, 5, 4, 0], # 2
[3, 4, 2, 0, 1, 5], # 3
[4, 0, 2, 1, 3, 5], # 4
[5, 1, 0, 2, 4, 3], # 5
]
TT = {
"r90": PA(TF.rotate, angle=-90.0), # 顺时针90
"r180": PA(TF.rotate, angle=-180.0), # 顺时针180
"r270": PA(TF.rotate, angle=-270.0), # 顺时针270
"s90": PA(TF.rotate, angle=90.0), # 逆时针90
"s180": PA(TF.rotate, angle=180.0), # 逆时针180
"s270": PA(TF.rotate, angle=270.0), # 逆时针270
}
self.transfroms_mapping = [
# 正 左 下 背 右 上
[None, None, None, None, None, None], # 0
[None, None, TT["r90"], None, None, TT["s90"]], # 1
[None, TT["s90"], TT["s180"], TT["r180"], TT["r90"], None], # 2
[None, None, TT["r180"], None, None, TT["s180"]], # 3
[None, None, TT["s90"], None, None, TT["r90"]], # 4
[None, TT["r90"], None, TT["r180"], TT["s90"], TT["s180"]], # 5
]
XT = { # xyz transforms
"zRrota90": PA(axis_rotate_xyz, rotate_axis="z", angle=np.pi / 2),
"zSrota90": PA(axis_rotate_xyz, rotate_axis="z", angle=-np.pi / 2),
"zrota180": PA(axis_rotate_xyz, rotate_axis="z", angle=-np.pi),
"xRrota90": PA(axis_rotate_xyz, rotate_axis="x", angle=np.pi / 2),
"xSrota90": PA(axis_rotate_xyz, rotate_axis="x", angle=-np.pi / 2),
}
self.xyz_transforms_mapping = [
# 正 左 下 背 右 上
[None,] * 6, # 0
[XT["zRrota90"],] * 6, # 1
[XT["xRrota90"],] * 6, # 2
[XT["zrota180"],] * 6, # 3
[XT["zSrota90"],] * 6, # 4
[XT["xSrota90"],] * 6, # 5
]
total_items = [
{
"path": os.path.join(base_dir, k),
"xyz_path": os.path.join(xyz_base, k) if xyz_base is not None else None,
"caption": v,
}
for k, v in final_dict.items()
]
total_items.sort(key=lambda x: x["path"])
if len(total_items) > eval_size:
if split == "train":
self.items = total_items[eval_size:]
else:
self.items = total_items[:eval_size]
else:
self.items = total_items
print("============= length of dataset %d =============" % len(self.items))
def __len__(self):
return len(self.items) * self.repeat
def __getitem__(self, index):
"""
choose index for target 6 images
select one of them as input image
target_images_vae: batch of `num_frame` images of one object from different views, processed by vae_processor
ref_ip: ref image in piexl space
ref_ip_img:
camera views decide the logical camera pose of images:
000 is front , ev: 0, azimuth: 0
001 is left , ev: 0, azimuth: -90
002 is down , ev: -90, azimuth: 0
003 is back , ev: 0, azimuth: 180
004 is right , ev: 0, azimuth: 90
005 is top , ev: 90, azimuth: 0
ref_index decides which image choose to be input image
for example when camera views = [1, 2, 3, 4, 5, 0], ref_position=5
then dataset return the instance images in order as [left, down, back, right, top, front]
in which view[ref_position] = view[5] = 0, so the refrence image is the front image
as all the faces can be rotated to the front face, so any image can be placed to ref_position as ref image(need some tramsforms)
to do a better control of which image can be placed to ref_position, we can set ref_indexs.
ref_indexs set [0] default, that means only 000 named images will be placed to ref_position.
on the situation of ref_indexs=[0, 1, 3, 4], only 000, 001, 003, 004 named images will be placed to ref_position.
"""
index_mapping = self.index_mapping
transfroms_mapping = self.transfroms_mapping
index = index % len(self.items)
target_dir = self.items[index]["path"]
target_xyz_dir = self.items[index]["xyz_path"]
caption = self.items[index]["caption"]
bg_color = np.random.rand() * 255
target_images = []
target_xyz_images = []
raw_images = []
raw_xyz_images = []
alpha_masks = []
ref_index = random.choice(self.ref_indexs)
cur_index_mapping = index_mapping[ref_index]
cur_transfroms_mapping = transfroms_mapping[ref_index]
cur_xyz_transfroms_mapping = self.xyz_transforms_mapping[ref_index]
for relative_view in self.camera_views:
image_index = cur_index_mapping[relative_view]
trans = cur_transfroms_mapping[relative_view]
trans_xyz = cur_xyz_transfroms_mapping[relative_view]
# open
img = Image.open(
os.path.join(target_dir, f"{image_index:03d}.png")
).convert("RGBA")
if trans is not None:
img = trans(img)
img = do_resize_content(img, self.resize_rate)
alpha_mask = img.getchannel("A")
alpha_masks.append(alpha_mask)
if self.random_background:
img = add_random_background(img, bg_color)
img = img.convert("RGB")
target_images.append(self.transfrom_vae(img))
raw_images.append(img)
if self.xyz_base is not None:
img_xyz = Image.open(
os.path.join(target_xyz_dir, f"xyz_new_{image_index:03d}.png")
).convert("RGBA")
img_xyz = trans_xyz(img_xyz) if trans_xyz is not None else img_xyz
img_xyz = trans(img_xyz) if trans is not None else img_xyz
img_xyz = do_resize_content(img_xyz, self.resize_rate)
img_xyz.putalpha(alpha_mask)
if self.random_background:
img_xyz = add_random_background(img_xyz, bg_color)
img_xyz = img_xyz.convert("RGB")
target_xyz_images.append(self.transfrom_vae(img_xyz))
if self.debug:
raw_xyz_images.append(img_xyz)
cameras = [get_camera_for_index(i).squeeze() for i in self.camera_views]
if self.ref_position is not None:
cameras[self.ref_position] = torch.zeros_like(
cameras[self.ref_position]
) # set ref camera to zero
cameras = torch.stack(cameras)
input_img = Image.open(
os.path.join(target_dir, f"{ref_index:03d}.png")
).convert("RGBA")
input_img = do_resize_content(input_img, self.resize_rate)
if self.random_background:
input_img = add_random_background(input_img, bg_color)
input_img = input_img.convert("RGB")
clip_cond = self.transfrom_clip(input_img)
vae_cond = self.transfrom_vae(input_img)
vae_target = torch.stack(target_images, dim=0)
if self.xyz_base is not None:
xyz_vae_target = torch.stack(target_xyz_images, dim=0)
else:
xyz_vae_target = []
if self.debug:
print(f"debug!!,{bg_color}")
return {
"target_images": raw_images,
"target_images_xyz": raw_xyz_images,
"input_img": input_img,
"cameras": cameras,
"caption": caption,
"item": self.items[index],
"alpha_masks": alpha_masks,
}
if self.split == "train":
return {
"target_images_vae": vae_target,
"target_images_xyz_vae": xyz_vae_target,
"clip_cond": clip_cond,
"vae_cond": vae_cond,
"cameras": cameras,
"caption": caption,
}
else: # eval
path = os.path.join(target_dir, f"{ref_index:03d}.png")
return dict(
path=path,
target_dir=target_dir,
cond_raw_images=raw_images,
cond=input_img,
ref_index=ref_index,
ident=f"{index}-{Path(target_dir).stem}",
)
class DataRelativeStroke(DataHQCRelative):
"""a temp dataset for add sync base using fov data as ref image"""
def __init__(
self,
base_dir,
caption_csv,
ref_indexs=[0],
ref_position=-1,
xyz_base=None,
camera_views=[3, 6, 9, 12, 15], # camera views are relative views, not abs
split="train",
image_size=256,
random_background=False,
resize_rate=1,
num_frames=5,
repeat=100,
outer_file=None,
debug=False,
eval_size=100,
stroke_p=0.3,
resize_range=None,
):
print(__class__)
super().__init__(
base_dir,
caption_csv,
ref_indexs=ref_indexs,
ref_position=ref_position,
xyz_base=xyz_base,
camera_views=camera_views,
split=split,
image_size=image_size,
random_background=random_background,
resize_rate=resize_rate,
num_frames=num_frames,
repeat=repeat,
outer_file=outer_file,
debug=debug,
eval_size=eval_size,
)
self.stroke_p = stroke_p
assert (
resize_range is None or len(resize_range) == 2
), "resize_range should be a tuple of 2 elements"
self.resize_range = resize_range
def __len__(self):
return len(self.items) * self.repeat
def __getitem__(self, index):
index_mapping = self.index_mapping
transfroms_mapping = self.transfroms_mapping
index = index % len(self.items)
target_dir = self.items[index]["path"]
target_xyz_dir = self.items[index]["xyz_path"]
caption = self.items[index]["caption"]
bg_color = np.random.rand() * 255
target_images = []
target_xyz_images = []
raw_images = []
raw_xyz_images = []
alpha_masks = []
ref_index = random.choice(self.ref_indexs)
cur_index_mapping = index_mapping[ref_index]
cur_transfroms_mapping = transfroms_mapping[ref_index]
cur_xyz_transfroms_mapping = self.xyz_transforms_mapping[ref_index]
cur_resize_rate = (
random.uniform(*self.resize_range) * self.resize_rate
if self.resize_range is not None
else self.resize_rate
)
for relative_view in self.camera_views:
image_index = cur_index_mapping[relative_view]
trans = cur_transfroms_mapping[relative_view]
trans_xyz = cur_xyz_transfroms_mapping[relative_view]
# open
img = Image.open(
os.path.join(target_dir, f"{image_index:03d}.png")
).convert("RGBA")
if trans is not None:
img = trans(img)
img = do_resize_content(img, cur_resize_rate)
alpha_mask = img.getchannel("A")
alpha_masks.append(alpha_mask)
if self.random_background:
img = add_random_background(img, bg_color)
img = img.convert("RGB")
target_images.append(self.transfrom_vae(img))
raw_images.append(img)
if self.xyz_base is not None:
img_xyz = Image.open(
os.path.join(target_xyz_dir, f"xyz_new_{image_index:03d}.png")
).convert("RGBA")
img_xyz = trans_xyz(img_xyz) if trans_xyz is not None else img_xyz
img_xyz = trans(img_xyz) if trans is not None else img_xyz
img_xyz = do_resize_content(img_xyz, cur_resize_rate)
img_xyz.putalpha(alpha_mask)
if self.random_background:
img_xyz = add_random_background(img_xyz, bg_color)
img_xyz = img_xyz.convert("RGB")
target_xyz_images.append(self.transfrom_vae(img_xyz))
if self.debug:
raw_xyz_images.append(img_xyz)
cameras = [get_camera_for_index(i).squeeze() for i in self.camera_views]
if self.ref_position is not None:
cameras[self.ref_position] = torch.zeros_like(
cameras[self.ref_position]
) # set ref camera to zero
cameras = torch.stack(cameras)
input_img = Image.open(
os.path.join(target_dir, f"{ref_index:03d}.png")
).convert("RGBA")
input_img = do_resize_content(input_img, cur_resize_rate)
if random.random() < self.stroke_p:
## random rgb color
color = (
random.randint(0, 255),
random.randint(0, 255),
random.randint(0, 255),
)
radius = random.randint(1, 3)
input_img = add_stroke(input_img, color=color, stroke_radius=radius)
if self.random_background:
input_img = add_random_background(input_img, bg_color)
input_img = input_img.convert("RGB")
clip_cond = self.transfrom_clip(input_img)
vae_cond = self.transfrom_vae(input_img)
vae_target = torch.stack(target_images, dim=0)
if self.xyz_base is not None:
xyz_vae_target = torch.stack(target_xyz_images, dim=0)
else:
xyz_vae_target = []
if self.debug:
print(f"debug!!,{bg_color}")
return {
"target_images": raw_images,
"target_images_xyz": raw_xyz_images,
"input_img": input_img,
"cameras": cameras,
"caption": caption,
"item": self.items[index],
"alpha_masks": alpha_masks,
"cur_resize_rate": cur_resize_rate,
}
if self.split == "train":
return {
"target_images_vae": vae_target,
"target_images_xyz_vae": xyz_vae_target,
"clip_cond": clip_cond,
"vae_cond": vae_cond,
"cameras": cameras,
"caption": caption,
}
else: # eval
path = os.path.join(target_dir, f"{ref_index:03d}.png")
return dict(
path=path,
target_dir=target_dir,
cond_raw_images=raw_images,
cond=input_img,
ref_index=ref_index,
ident=f"{index}-{Path(target_dir).stem}",
)
class InTheWildImages(Dataset):
"""
a data set for in the wild images,
receive base floders, image path ls, path files as input
"""
def __init__(self, base_dirs=[], image_paths=[], path_files=[]):
print(__class__)
self.base_dirs = base_dirs
self.image_paths = image_paths
self.path_files = path_files
self.init_item()
def init_item(self):
items = []
for d in self.base_dirs:
items += [osp.join(d, f) for f in os.listdir(d)]
items = items + self.image_paths
for file in self.path_files:
with open(file, "r") as f:
items += [line.strip() for line in f.readlines()]
items.sort()
self.items = items
def __len__(self):
return len(self.items)
def __getitem__(self, index):
item = self.items[index]
img = Image.open(item)
background = Image.new("RGBA", img.size, (0, 0, 0, 0))
cond = Image.alpha_composite(background, img)
return dict(
path=item, ident=f"{index}-{Path(item).stem}", cond=cond.convert("RGB")
)