File size: 21,348 Bytes
0f95337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import numpy
import numpy as np
import torch
import os
import random
import pandas as pd
import os.path as osp
import PIL.Image as Image
from torch.utils.data import Dataset
from pathlib import Path
from imagedream.ldm.util import add_random_background
from imagedream.camera_utils import get_camera_for_index
from libs.base_utils import do_resize_content, add_stroke

import torchvision.transforms as transforms


def to_rgb_image(maybe_rgba: Image.Image):
    if maybe_rgba.mode == "RGB":
        return maybe_rgba
    elif maybe_rgba.mode == "RGBA":
        rgba = maybe_rgba
        img = numpy.random.randint(
            127, 128, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8
        )
        img = Image.fromarray(img, "RGB")
        img.paste(rgba, mask=rgba.getchannel("A"))
        return img
    else:
        raise ValueError("Unsupported image type.", maybe_rgba.mode)


def axis_rotate_xyz(img: Image.Image, rotate_axis="z", angle=90.0):
    img = img.convert("RGB")
    img = np.array(img) - 127
    img = img.astype(np.float32)
    # perform element-wise sin-cos rotation
    if rotate_axis == "z":
        img = np.stack(
            [
                img[..., 0] * np.cos(angle) - img[..., 1] * np.sin(angle),
                img[..., 0] * np.sin(angle) + img[..., 1] * np.cos(angle),
                img[..., 2],
            ],
            -1,
        )
    elif rotate_axis == "y":
        img = np.stack(
            [
                img[..., 0] * np.cos(angle) + img[..., 2] * np.sin(angle),
                img[..., 1],
                -img[..., 0] * np.sin(angle) + img[..., 2] * np.cos(angle),
            ],
            -1,
        )
    elif rotate_axis == "x":
        img = np.stack(
            [
                img[..., 0],
                img[..., 1] * np.cos(angle) - img[..., 2] * np.sin(angle),
                img[..., 1] * np.sin(angle) + img[..., 2] * np.cos(angle),
            ],
            -1,
        )

    return Image.fromarray(img.astype(np.uint8) + 127)


class DataHQCRelative(Dataset):
    """
    - base_dir
        - uid1
            - 000.png
            - 001.png
            - ...
        - uid2
    - xyz_base
        - uid1
            - xyz_new_000.png
            - xyz_new_001.png
            - ...
    accepte caption data(in csv format)
    """

    def __init__(
        self,
        base_dir,
        caption_csv,
        ref_indexs=[0],
        ref_position=-1,
        xyz_base=None,
        camera_views=[3, 6, 9, 12, 15],  # camera views are relative views, not abs
        split="train",
        image_size=256,
        random_background=False,
        resize_rate=1,
        num_frames=5,
        repeat=100,
        outer_file=None,
        debug=False,
        eval_size=100,
    ):
        print(__class__)
        OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
        OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
        df = pd.read_csv(caption_csv, sep=",", names=["id", "caption"])
        id_to_caption = {}
        for i in range(len(df.index)):
            item = df.iloc[i]
            id_to_caption[item["id"]] = item["caption"]

        # outer file is txt file, containing each ident per line, specific idents not included in the train process
        outer_set = (
            set(open(outer_file, "r").read().strip().split("\n"))
            if outer_file is not None
            else set()
        )
        xyz_set = set(os.listdir(xyz_base)) if xyz_base is not None else set()
        common_keys = set(id_to_caption.keys()) & set(os.listdir(base_dir))
        common_keys = common_keys & xyz_set if xyz_base is not None else common_keys
        common_keys = common_keys - outer_set
        self.common_keys = common_keys
        self.id_to_caption = id_to_caption
        final_dict = {key: id_to_caption[key] for key in common_keys}
        self.image_size = image_size
        self.base_dir = Path(base_dir)
        self.xyz_base = xyz_base
        self.repeat = repeat
        self.num_frames = num_frames
        self.camera_views = camera_views[:num_frames]
        self.split = split
        self.ref_indexs = ref_indexs
        self.ref_position = ref_position
        self.resize_rate = resize_rate
        self.random_background = random_background
        self.debug = debug
        assert split in ["train", "eval"]

        clip_size = 224
        self.transfrom_clip = transforms.Compose(
            [
                transforms.Resize(
                    (clip_size, clip_size),
                    interpolation=Image.BICUBIC,
                    antialias="warn",
                ),
                transforms.ToTensor(),
                transforms.Normalize(mean=OPENAI_DATASET_MEAN, std=OPENAI_DATASET_STD),
            ]
        )

        self.transfrom_vae = transforms.Compose(
            [
                transforms.Resize((image_size, image_size)),
                transforms.ToTensor(),
                transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
            ]
        )
        # 对于第i个视角作为参考时,左边,下面,背面,右边,上面,的图片名称index
        import torchvision.transforms.functional as TF
        from functools import partial as PA

        self.index_mapping = [
            #    正  左 下 背  右 上
            [0, 1, 2, 3, 4, 5],  # 0
            [1, 3, 2, 4, 0, 5],  # 1
            [2, 1, 3, 5, 4, 0],  # 2
            [3, 4, 2, 0, 1, 5],  # 3
            [4, 0, 2, 1, 3, 5],  # 4
            [5, 1, 0, 2, 4, 3],  # 5
        ]
        TT = {
            "r90": PA(TF.rotate, angle=-90.0),  # 顺时针90
            "r180": PA(TF.rotate, angle=-180.0),  # 顺时针180
            "r270": PA(TF.rotate, angle=-270.0),  # 顺时针270
            "s90": PA(TF.rotate, angle=90.0),  # 逆时针90
            "s180": PA(TF.rotate, angle=180.0),  # 逆时针180
            "s270": PA(TF.rotate, angle=270.0),  # 逆时针270
        }

        self.transfroms_mapping = [
            # 正 左 下 背  右 上
            [None, None, None, None, None, None],  # 0
            [None, None, TT["r90"], None, None, TT["s90"]],  # 1
            [None, TT["s90"], TT["s180"], TT["r180"], TT["r90"], None],  # 2
            [None, None, TT["r180"], None, None, TT["s180"]],  # 3
            [None, None, TT["s90"], None, None, TT["r90"]],  # 4
            [None, TT["r90"], None, TT["r180"], TT["s90"], TT["s180"]],  # 5
        ]

        XT = {  # xyz transforms
            "zRrota90": PA(axis_rotate_xyz, rotate_axis="z", angle=np.pi / 2),
            "zSrota90": PA(axis_rotate_xyz, rotate_axis="z", angle=-np.pi / 2),
            "zrota180": PA(axis_rotate_xyz, rotate_axis="z", angle=-np.pi),
            "xRrota90": PA(axis_rotate_xyz, rotate_axis="x", angle=np.pi / 2),
            "xSrota90": PA(axis_rotate_xyz, rotate_axis="x", angle=-np.pi / 2),
        }
        
        self.xyz_transforms_mapping = [
            # 正 左 下 背  右 上
            [None,] * 6, # 0
            [XT["zRrota90"],] * 6, # 1
            [XT["xRrota90"],] * 6, # 2
            [XT["zrota180"],] * 6, # 3
            [XT["zSrota90"],] * 6, # 4
            [XT["xSrota90"],] * 6, # 5
        ]
        
        total_items = [
            {
                "path": os.path.join(base_dir, k),
                "xyz_path": os.path.join(xyz_base, k) if xyz_base is not None else None,
                "caption": v,
            }
            for k, v in final_dict.items()
        ]
        total_items.sort(key=lambda x: x["path"])

        if len(total_items) > eval_size:
            if split == "train":
                self.items = total_items[eval_size:]
            else:
                self.items = total_items[:eval_size]
        else:
            self.items = total_items

        print("============= length of dataset %d =============" % len(self.items))

    def __len__(self):
        return len(self.items) * self.repeat

    def __getitem__(self, index):
        """
        choose index for target 6 images
        select one of them as input image
        target_images_vae: batch of `num_frame` images of one object from different views, processed by vae_processor
        ref_ip: ref image in piexl space
        ref_ip_img:
        camera views decide the logical camera pose of images:
                000 is front , ev: 0, azimuth: 0
                001 is left  , ev: 0, azimuth: -90
                002 is down  , ev: -90, azimuth: 0
                003 is back  , ev: 0, azimuth: 180
                004 is right , ev: 0, azimuth: 90
                005 is top   , ev: 90, azimuth: 0
        ref_index decides which image choose to be input image

        for example when camera views = [1,   2,   3,   4,  5,  0], ref_position=5
        then dataset return the instance images in order as [left, down, back, right, top, front]
        in which view[ref_position] = view[5] = 0, so the refrence image is the front image

        as all the faces can be rotated to the front face, so any image can be placed to ref_position as ref image(need some tramsforms)
        to do a better control of which image can be placed to ref_position, we can set ref_indexs.
        ref_indexs set [0] default, that means only 000 named images will be placed to ref_position.
        on the situation of ref_indexs=[0, 1, 3, 4], only 000, 001, 003, 004 named images will be placed to ref_position.
        """
        index_mapping = self.index_mapping
        transfroms_mapping = self.transfroms_mapping
        index = index % len(self.items)

        target_dir = self.items[index]["path"]
        target_xyz_dir = self.items[index]["xyz_path"]
        caption = self.items[index]["caption"]

        bg_color = np.random.rand() * 255
        target_images = []
        target_xyz_images = []
        raw_images = []
        raw_xyz_images = []
        alpha_masks = []
        ref_index = random.choice(self.ref_indexs)
        cur_index_mapping = index_mapping[ref_index]
        cur_transfroms_mapping = transfroms_mapping[ref_index]
        cur_xyz_transfroms_mapping = self.xyz_transforms_mapping[ref_index]
        for relative_view in self.camera_views:
            image_index = cur_index_mapping[relative_view]
            trans = cur_transfroms_mapping[relative_view]
            trans_xyz = cur_xyz_transfroms_mapping[relative_view]
            # open
            img = Image.open(
                os.path.join(target_dir, f"{image_index:03d}.png")
            ).convert("RGBA")
            if trans is not None:
                img = trans(img)
            img = do_resize_content(img, self.resize_rate)
            alpha_mask = img.getchannel("A")
            alpha_masks.append(alpha_mask)
            if self.random_background:
                img = add_random_background(img, bg_color)
            img = img.convert("RGB")
            target_images.append(self.transfrom_vae(img))

            raw_images.append(img)

            if self.xyz_base is not None:
                img_xyz = Image.open(
                    os.path.join(target_xyz_dir, f"xyz_new_{image_index:03d}.png")
                ).convert("RGBA")
                img_xyz = trans_xyz(img_xyz) if trans_xyz is not None else img_xyz
                img_xyz = trans(img_xyz) if trans is not None else img_xyz
                img_xyz = do_resize_content(img_xyz, self.resize_rate)
                img_xyz.putalpha(alpha_mask)
                if self.random_background:
                    img_xyz = add_random_background(img_xyz, bg_color)
                img_xyz = img_xyz.convert("RGB")
                target_xyz_images.append(self.transfrom_vae(img_xyz))
                if self.debug:
                    raw_xyz_images.append(img_xyz)

        cameras = [get_camera_for_index(i).squeeze() for i in self.camera_views]
        if self.ref_position is not None:
            cameras[self.ref_position] = torch.zeros_like(
                cameras[self.ref_position]
            )  # set ref camera to zero

        cameras = torch.stack(cameras)

        input_img = Image.open(
            os.path.join(target_dir, f"{ref_index:03d}.png")
        ).convert("RGBA")
        input_img = do_resize_content(input_img, self.resize_rate)
        if self.random_background:
            input_img = add_random_background(input_img, bg_color)
        input_img = input_img.convert("RGB")

        clip_cond = self.transfrom_clip(input_img)
        vae_cond = self.transfrom_vae(input_img)

        vae_target = torch.stack(target_images, dim=0)
        if self.xyz_base is not None:
            xyz_vae_target = torch.stack(target_xyz_images, dim=0)
        else:
            xyz_vae_target = []

        if self.debug:
            print(f"debug!!,{bg_color}")
            return {
                "target_images": raw_images,
                "target_images_xyz": raw_xyz_images,
                "input_img": input_img,
                "cameras": cameras,
                "caption": caption,
                "item": self.items[index],
                "alpha_masks": alpha_masks,
            }

        if self.split == "train":
            return {
                "target_images_vae": vae_target,
                "target_images_xyz_vae": xyz_vae_target,
                "clip_cond": clip_cond,
                "vae_cond": vae_cond,
                "cameras": cameras,
                "caption": caption,
            }
        else:  # eval
            path = os.path.join(target_dir, f"{ref_index:03d}.png")
            return dict(
                path=path,
                target_dir=target_dir,
                cond_raw_images=raw_images,
                cond=input_img,
                ref_index=ref_index,
                ident=f"{index}-{Path(target_dir).stem}",
            )


class DataRelativeStroke(DataHQCRelative):
    """a temp dataset for add sync base using fov data as ref image"""

    def __init__(
        self,
        base_dir,
        caption_csv,
        ref_indexs=[0],
        ref_position=-1,
        xyz_base=None,
        camera_views=[3, 6, 9, 12, 15],  # camera views are relative views, not abs
        split="train",
        image_size=256,
        random_background=False,
        resize_rate=1,
        num_frames=5,
        repeat=100,
        outer_file=None,
        debug=False,
        eval_size=100,
        stroke_p=0.3,
        resize_range=None,
    ):
        print(__class__)
        super().__init__(
            base_dir,
            caption_csv,
            ref_indexs=ref_indexs,
            ref_position=ref_position,
            xyz_base=xyz_base,
            camera_views=camera_views,
            split=split,
            image_size=image_size,
            random_background=random_background,
            resize_rate=resize_rate,
            num_frames=num_frames,
            repeat=repeat,
            outer_file=outer_file,
            debug=debug,
            eval_size=eval_size,
        )
        self.stroke_p = stroke_p
        assert (
            resize_range is None or len(resize_range) == 2
        ), "resize_range should be a tuple of 2 elements"
        self.resize_range = resize_range

    def __len__(self):
        return len(self.items) * self.repeat

    def __getitem__(self, index):
        index_mapping = self.index_mapping
        transfroms_mapping = self.transfroms_mapping
        index = index % len(self.items)

        target_dir = self.items[index]["path"]
        target_xyz_dir = self.items[index]["xyz_path"]
        caption = self.items[index]["caption"]

        bg_color = np.random.rand() * 255
        target_images = []
        target_xyz_images = []
        raw_images = []
        raw_xyz_images = []
        alpha_masks = []
        ref_index = random.choice(self.ref_indexs)
        cur_index_mapping = index_mapping[ref_index]
        cur_transfroms_mapping = transfroms_mapping[ref_index]
        cur_xyz_transfroms_mapping = self.xyz_transforms_mapping[ref_index]
        cur_resize_rate = (
            random.uniform(*self.resize_range) * self.resize_rate
            if self.resize_range is not None
            else self.resize_rate
        )
        for relative_view in self.camera_views:
            image_index = cur_index_mapping[relative_view]
            trans = cur_transfroms_mapping[relative_view]
            trans_xyz = cur_xyz_transfroms_mapping[relative_view]
            # open
            img = Image.open(
                os.path.join(target_dir, f"{image_index:03d}.png")
            ).convert("RGBA")
            if trans is not None:
                img = trans(img)
            img = do_resize_content(img, cur_resize_rate)
            alpha_mask = img.getchannel("A")
            alpha_masks.append(alpha_mask)
            if self.random_background:
                img = add_random_background(img, bg_color)

            img = img.convert("RGB")
            target_images.append(self.transfrom_vae(img))
            raw_images.append(img)

            if self.xyz_base is not None:
                img_xyz = Image.open(
                    os.path.join(target_xyz_dir, f"xyz_new_{image_index:03d}.png")
                ).convert("RGBA")
                img_xyz = trans_xyz(img_xyz) if trans_xyz is not None else img_xyz
                img_xyz = trans(img_xyz) if trans is not None else img_xyz
                img_xyz = do_resize_content(img_xyz, cur_resize_rate)
                img_xyz.putalpha(alpha_mask)
                if self.random_background:
                    img_xyz = add_random_background(img_xyz, bg_color)
                img_xyz = img_xyz.convert("RGB")
                target_xyz_images.append(self.transfrom_vae(img_xyz))
                if self.debug:
                    raw_xyz_images.append(img_xyz)

        cameras = [get_camera_for_index(i).squeeze() for i in self.camera_views]
        if self.ref_position is not None:
            cameras[self.ref_position] = torch.zeros_like(
                cameras[self.ref_position]
            )  # set ref camera to zero

        cameras = torch.stack(cameras)

        input_img = Image.open(
            os.path.join(target_dir, f"{ref_index:03d}.png")
        ).convert("RGBA")
        input_img = do_resize_content(input_img, cur_resize_rate)
        if random.random() < self.stroke_p:
            ## random rgb color
            color = (
                random.randint(0, 255),
                random.randint(0, 255),
                random.randint(0, 255),
            )
            radius = random.randint(1, 3)
            input_img = add_stroke(input_img, color=color, stroke_radius=radius)
        if self.random_background:
            input_img = add_random_background(input_img, bg_color)
        input_img = input_img.convert("RGB")

        clip_cond = self.transfrom_clip(input_img)
        vae_cond = self.transfrom_vae(input_img)

        vae_target = torch.stack(target_images, dim=0)
        if self.xyz_base is not None:
            xyz_vae_target = torch.stack(target_xyz_images, dim=0)
        else:
            xyz_vae_target = []

        if self.debug:
            print(f"debug!!,{bg_color}")
            return {
                "target_images": raw_images,
                "target_images_xyz": raw_xyz_images,
                "input_img": input_img,
                "cameras": cameras,
                "caption": caption,
                "item": self.items[index],
                "alpha_masks": alpha_masks,
                "cur_resize_rate": cur_resize_rate,
            }

        if self.split == "train":
            return {
                "target_images_vae": vae_target,
                "target_images_xyz_vae": xyz_vae_target,
                "clip_cond": clip_cond,
                "vae_cond": vae_cond,
                "cameras": cameras,
                "caption": caption,
            }
        else:  # eval
            path = os.path.join(target_dir, f"{ref_index:03d}.png")
            return dict(
                path=path,
                target_dir=target_dir,
                cond_raw_images=raw_images,
                cond=input_img,
                ref_index=ref_index,
                ident=f"{index}-{Path(target_dir).stem}",
            )


class InTheWildImages(Dataset):
    """
    a data set for in the wild images,
    receive base floders, image path ls, path files as input
    """

    def __init__(self, base_dirs=[], image_paths=[], path_files=[]):
        print(__class__)
        self.base_dirs = base_dirs
        self.image_paths = image_paths
        self.path_files = path_files
        self.init_item()

    def init_item(self):
        items = []
        for d in self.base_dirs:
            items += [osp.join(d, f) for f in os.listdir(d)]
        items = items + self.image_paths

        for file in self.path_files:
            with open(file, "r") as f:
                items += [line.strip() for line in f.readlines()]
        items.sort()
        self.items = items

    def __len__(self):
        return len(self.items)

    def __getitem__(self, index):
        item = self.items[index]
        img = Image.open(item)
        background = Image.new("RGBA", img.size, (0, 0, 0, 0))
        cond = Image.alpha_composite(background, img)
        return dict(
            path=item, ident=f"{index}-{Path(item).stem}", cond=cond.convert("RGB")
        )