Spaces:
Runtime error
Runtime error
Upload libs/data.py with huggingface_hub
Browse files- libs/data.py +580 -0
libs/data.py
ADDED
@@ -0,0 +1,580 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
import random
|
6 |
+
import pandas as pd
|
7 |
+
import os.path as osp
|
8 |
+
import PIL.Image as Image
|
9 |
+
from torch.utils.data import Dataset
|
10 |
+
from pathlib import Path
|
11 |
+
from imagedream.ldm.util import add_random_background
|
12 |
+
from imagedream.camera_utils import get_camera_for_index
|
13 |
+
from libs.base_utils import do_resize_content, add_stroke
|
14 |
+
|
15 |
+
import torchvision.transforms as transforms
|
16 |
+
|
17 |
+
|
18 |
+
def to_rgb_image(maybe_rgba: Image.Image):
|
19 |
+
if maybe_rgba.mode == "RGB":
|
20 |
+
return maybe_rgba
|
21 |
+
elif maybe_rgba.mode == "RGBA":
|
22 |
+
rgba = maybe_rgba
|
23 |
+
img = numpy.random.randint(
|
24 |
+
127, 128, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8
|
25 |
+
)
|
26 |
+
img = Image.fromarray(img, "RGB")
|
27 |
+
img.paste(rgba, mask=rgba.getchannel("A"))
|
28 |
+
return img
|
29 |
+
else:
|
30 |
+
raise ValueError("Unsupported image type.", maybe_rgba.mode)
|
31 |
+
|
32 |
+
|
33 |
+
def axis_rotate_xyz(img: Image.Image, rotate_axis="z", angle=90.0):
|
34 |
+
img = img.convert("RGB")
|
35 |
+
img = np.array(img) - 127
|
36 |
+
img = img.astype(np.float32)
|
37 |
+
# perform element-wise sin-cos rotation
|
38 |
+
if rotate_axis == "z":
|
39 |
+
img = np.stack(
|
40 |
+
[
|
41 |
+
img[..., 0] * np.cos(angle) - img[..., 1] * np.sin(angle),
|
42 |
+
img[..., 0] * np.sin(angle) + img[..., 1] * np.cos(angle),
|
43 |
+
img[..., 2],
|
44 |
+
],
|
45 |
+
-1,
|
46 |
+
)
|
47 |
+
elif rotate_axis == "y":
|
48 |
+
img = np.stack(
|
49 |
+
[
|
50 |
+
img[..., 0] * np.cos(angle) + img[..., 2] * np.sin(angle),
|
51 |
+
img[..., 1],
|
52 |
+
-img[..., 0] * np.sin(angle) + img[..., 2] * np.cos(angle),
|
53 |
+
],
|
54 |
+
-1,
|
55 |
+
)
|
56 |
+
elif rotate_axis == "x":
|
57 |
+
img = np.stack(
|
58 |
+
[
|
59 |
+
img[..., 0],
|
60 |
+
img[..., 1] * np.cos(angle) - img[..., 2] * np.sin(angle),
|
61 |
+
img[..., 1] * np.sin(angle) + img[..., 2] * np.cos(angle),
|
62 |
+
],
|
63 |
+
-1,
|
64 |
+
)
|
65 |
+
|
66 |
+
return Image.fromarray(img.astype(np.uint8) + 127)
|
67 |
+
|
68 |
+
|
69 |
+
class DataHQCRelative(Dataset):
|
70 |
+
"""
|
71 |
+
- base_dir
|
72 |
+
- uid1
|
73 |
+
- 000.png
|
74 |
+
- 001.png
|
75 |
+
- ...
|
76 |
+
- uid2
|
77 |
+
- xyz_base
|
78 |
+
- uid1
|
79 |
+
- xyz_new_000.png
|
80 |
+
- xyz_new_001.png
|
81 |
+
- ...
|
82 |
+
accepte caption data(in csv format)
|
83 |
+
"""
|
84 |
+
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
base_dir,
|
88 |
+
caption_csv,
|
89 |
+
ref_indexs=[0],
|
90 |
+
ref_position=-1,
|
91 |
+
xyz_base=None,
|
92 |
+
camera_views=[3, 6, 9, 12, 15], # camera views are relative views, not abs
|
93 |
+
split="train",
|
94 |
+
image_size=256,
|
95 |
+
random_background=False,
|
96 |
+
resize_rate=1,
|
97 |
+
num_frames=5,
|
98 |
+
repeat=100,
|
99 |
+
outer_file=None,
|
100 |
+
debug=False,
|
101 |
+
eval_size=100,
|
102 |
+
):
|
103 |
+
print(__class__)
|
104 |
+
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
105 |
+
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
|
106 |
+
df = pd.read_csv(caption_csv, sep=",", names=["id", "caption"])
|
107 |
+
id_to_caption = {}
|
108 |
+
for i in range(len(df.index)):
|
109 |
+
item = df.iloc[i]
|
110 |
+
id_to_caption[item["id"]] = item["caption"]
|
111 |
+
|
112 |
+
# outer file is txt file, containing each ident per line, specific idents not included in the train process
|
113 |
+
outer_set = (
|
114 |
+
set(open(outer_file, "r").read().strip().split("\n"))
|
115 |
+
if outer_file is not None
|
116 |
+
else set()
|
117 |
+
)
|
118 |
+
xyz_set = set(os.listdir(xyz_base)) if xyz_base is not None else set()
|
119 |
+
common_keys = set(id_to_caption.keys()) & set(os.listdir(base_dir))
|
120 |
+
common_keys = common_keys & xyz_set if xyz_base is not None else common_keys
|
121 |
+
common_keys = common_keys - outer_set
|
122 |
+
self.common_keys = common_keys
|
123 |
+
self.id_to_caption = id_to_caption
|
124 |
+
final_dict = {key: id_to_caption[key] for key in common_keys}
|
125 |
+
self.image_size = image_size
|
126 |
+
self.base_dir = Path(base_dir)
|
127 |
+
self.xyz_base = xyz_base
|
128 |
+
self.repeat = repeat
|
129 |
+
self.num_frames = num_frames
|
130 |
+
self.camera_views = camera_views[:num_frames]
|
131 |
+
self.split = split
|
132 |
+
self.ref_indexs = ref_indexs
|
133 |
+
self.ref_position = ref_position
|
134 |
+
self.resize_rate = resize_rate
|
135 |
+
self.random_background = random_background
|
136 |
+
self.debug = debug
|
137 |
+
assert split in ["train", "eval"]
|
138 |
+
|
139 |
+
clip_size = 224
|
140 |
+
self.transfrom_clip = transforms.Compose(
|
141 |
+
[
|
142 |
+
transforms.Resize(
|
143 |
+
(clip_size, clip_size),
|
144 |
+
interpolation=Image.BICUBIC,
|
145 |
+
antialias="warn",
|
146 |
+
),
|
147 |
+
transforms.ToTensor(),
|
148 |
+
transforms.Normalize(mean=OPENAI_DATASET_MEAN, std=OPENAI_DATASET_STD),
|
149 |
+
]
|
150 |
+
)
|
151 |
+
|
152 |
+
self.transfrom_vae = transforms.Compose(
|
153 |
+
[
|
154 |
+
transforms.Resize((image_size, image_size)),
|
155 |
+
transforms.ToTensor(),
|
156 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
157 |
+
]
|
158 |
+
)
|
159 |
+
# 对于第i个视角作为参考时,左边,下面,背面,右边,上面,的图片名称index
|
160 |
+
import torchvision.transforms.functional as TF
|
161 |
+
from functools import partial as PA
|
162 |
+
|
163 |
+
self.index_mapping = [
|
164 |
+
# 正 左 下 背 右 上
|
165 |
+
[0, 1, 2, 3, 4, 5], # 0
|
166 |
+
[1, 3, 2, 4, 0, 5], # 1
|
167 |
+
[2, 1, 3, 5, 4, 0], # 2
|
168 |
+
[3, 4, 2, 0, 1, 5], # 3
|
169 |
+
[4, 0, 2, 1, 3, 5], # 4
|
170 |
+
[5, 1, 0, 2, 4, 3], # 5
|
171 |
+
]
|
172 |
+
TT = {
|
173 |
+
"r90": PA(TF.rotate, angle=-90.0), # 顺时针90
|
174 |
+
"r180": PA(TF.rotate, angle=-180.0), # 顺时针180
|
175 |
+
"r270": PA(TF.rotate, angle=-270.0), # 顺时针270
|
176 |
+
"s90": PA(TF.rotate, angle=90.0), # 逆时针90
|
177 |
+
"s180": PA(TF.rotate, angle=180.0), # 逆时针180
|
178 |
+
"s270": PA(TF.rotate, angle=270.0), # 逆时针270
|
179 |
+
}
|
180 |
+
|
181 |
+
self.transfroms_mapping = [
|
182 |
+
# 正 左 下 背 右 上
|
183 |
+
[None, None, None, None, None, None], # 0
|
184 |
+
[None, None, TT["r90"], None, None, TT["s90"]], # 1
|
185 |
+
[None, TT["s90"], TT["s180"], TT["r180"], TT["r90"], None], # 2
|
186 |
+
[None, None, TT["r180"], None, None, TT["s180"]], # 3
|
187 |
+
[None, None, TT["s90"], None, None, TT["r90"]], # 4
|
188 |
+
[None, TT["r90"], None, TT["r180"], TT["s90"], TT["s180"]], # 5
|
189 |
+
]
|
190 |
+
|
191 |
+
XT = { # xyz transforms
|
192 |
+
"zRrota90": PA(axis_rotate_xyz, rotate_axis="z", angle=np.pi / 2),
|
193 |
+
"zSrota90": PA(axis_rotate_xyz, rotate_axis="z", angle=-np.pi / 2),
|
194 |
+
"zrota180": PA(axis_rotate_xyz, rotate_axis="z", angle=-np.pi),
|
195 |
+
"xRrota90": PA(axis_rotate_xyz, rotate_axis="x", angle=np.pi / 2),
|
196 |
+
"xSrota90": PA(axis_rotate_xyz, rotate_axis="x", angle=-np.pi / 2),
|
197 |
+
}
|
198 |
+
|
199 |
+
self.xyz_transforms_mapping = [
|
200 |
+
# 正 左 下 背 右 上
|
201 |
+
[None,] * 6, # 0
|
202 |
+
[XT["zRrota90"],] * 6, # 1
|
203 |
+
[XT["xRrota90"],] * 6, # 2
|
204 |
+
[XT["zrota180"],] * 6, # 3
|
205 |
+
[XT["zSrota90"],] * 6, # 4
|
206 |
+
[XT["xSrota90"],] * 6, # 5
|
207 |
+
]
|
208 |
+
|
209 |
+
total_items = [
|
210 |
+
{
|
211 |
+
"path": os.path.join(base_dir, k),
|
212 |
+
"xyz_path": os.path.join(xyz_base, k) if xyz_base is not None else None,
|
213 |
+
"caption": v,
|
214 |
+
}
|
215 |
+
for k, v in final_dict.items()
|
216 |
+
]
|
217 |
+
total_items.sort(key=lambda x: x["path"])
|
218 |
+
|
219 |
+
if len(total_items) > eval_size:
|
220 |
+
if split == "train":
|
221 |
+
self.items = total_items[eval_size:]
|
222 |
+
else:
|
223 |
+
self.items = total_items[:eval_size]
|
224 |
+
else:
|
225 |
+
self.items = total_items
|
226 |
+
|
227 |
+
print("============= length of dataset %d =============" % len(self.items))
|
228 |
+
|
229 |
+
def __len__(self):
|
230 |
+
return len(self.items) * self.repeat
|
231 |
+
|
232 |
+
def __getitem__(self, index):
|
233 |
+
"""
|
234 |
+
choose index for target 6 images
|
235 |
+
select one of them as input image
|
236 |
+
target_images_vae: batch of `num_frame` images of one object from different views, processed by vae_processor
|
237 |
+
ref_ip: ref image in piexl space
|
238 |
+
ref_ip_img:
|
239 |
+
camera views decide the logical camera pose of images:
|
240 |
+
000 is front , ev: 0, azimuth: 0
|
241 |
+
001 is left , ev: 0, azimuth: -90
|
242 |
+
002 is down , ev: -90, azimuth: 0
|
243 |
+
003 is back , ev: 0, azimuth: 180
|
244 |
+
004 is right , ev: 0, azimuth: 90
|
245 |
+
005 is top , ev: 90, azimuth: 0
|
246 |
+
ref_index decides which image choose to be input image
|
247 |
+
|
248 |
+
for example when camera views = [1, 2, 3, 4, 5, 0], ref_position=5
|
249 |
+
then dataset return the instance images in order as [left, down, back, right, top, front]
|
250 |
+
in which view[ref_position] = view[5] = 0, so the refrence image is the front image
|
251 |
+
|
252 |
+
as all the faces can be rotated to the front face, so any image can be placed to ref_position as ref image(need some tramsforms)
|
253 |
+
to do a better control of which image can be placed to ref_position, we can set ref_indexs.
|
254 |
+
ref_indexs set [0] default, that means only 000 named images will be placed to ref_position.
|
255 |
+
on the situation of ref_indexs=[0, 1, 3, 4], only 000, 001, 003, 004 named images will be placed to ref_position.
|
256 |
+
"""
|
257 |
+
index_mapping = self.index_mapping
|
258 |
+
transfroms_mapping = self.transfroms_mapping
|
259 |
+
index = index % len(self.items)
|
260 |
+
|
261 |
+
target_dir = self.items[index]["path"]
|
262 |
+
target_xyz_dir = self.items[index]["xyz_path"]
|
263 |
+
caption = self.items[index]["caption"]
|
264 |
+
|
265 |
+
bg_color = np.random.rand() * 255
|
266 |
+
target_images = []
|
267 |
+
target_xyz_images = []
|
268 |
+
raw_images = []
|
269 |
+
raw_xyz_images = []
|
270 |
+
alpha_masks = []
|
271 |
+
ref_index = random.choice(self.ref_indexs)
|
272 |
+
cur_index_mapping = index_mapping[ref_index]
|
273 |
+
cur_transfroms_mapping = transfroms_mapping[ref_index]
|
274 |
+
cur_xyz_transfroms_mapping = self.xyz_transforms_mapping[ref_index]
|
275 |
+
for relative_view in self.camera_views:
|
276 |
+
image_index = cur_index_mapping[relative_view]
|
277 |
+
trans = cur_transfroms_mapping[relative_view]
|
278 |
+
trans_xyz = cur_xyz_transfroms_mapping[relative_view]
|
279 |
+
# open
|
280 |
+
img = Image.open(
|
281 |
+
os.path.join(target_dir, f"{image_index:03d}.png")
|
282 |
+
).convert("RGBA")
|
283 |
+
if trans is not None:
|
284 |
+
img = trans(img)
|
285 |
+
img = do_resize_content(img, self.resize_rate)
|
286 |
+
alpha_mask = img.getchannel("A")
|
287 |
+
alpha_masks.append(alpha_mask)
|
288 |
+
if self.random_background:
|
289 |
+
img = add_random_background(img, bg_color)
|
290 |
+
img = img.convert("RGB")
|
291 |
+
target_images.append(self.transfrom_vae(img))
|
292 |
+
|
293 |
+
raw_images.append(img)
|
294 |
+
|
295 |
+
if self.xyz_base is not None:
|
296 |
+
img_xyz = Image.open(
|
297 |
+
os.path.join(target_xyz_dir, f"xyz_new_{image_index:03d}.png")
|
298 |
+
).convert("RGBA")
|
299 |
+
img_xyz = trans_xyz(img_xyz) if trans_xyz is not None else img_xyz
|
300 |
+
img_xyz = trans(img_xyz) if trans is not None else img_xyz
|
301 |
+
img_xyz = do_resize_content(img_xyz, self.resize_rate)
|
302 |
+
img_xyz.putalpha(alpha_mask)
|
303 |
+
if self.random_background:
|
304 |
+
img_xyz = add_random_background(img_xyz, bg_color)
|
305 |
+
img_xyz = img_xyz.convert("RGB")
|
306 |
+
target_xyz_images.append(self.transfrom_vae(img_xyz))
|
307 |
+
if self.debug:
|
308 |
+
raw_xyz_images.append(img_xyz)
|
309 |
+
|
310 |
+
cameras = [get_camera_for_index(i).squeeze() for i in self.camera_views]
|
311 |
+
if self.ref_position is not None:
|
312 |
+
cameras[self.ref_position] = torch.zeros_like(
|
313 |
+
cameras[self.ref_position]
|
314 |
+
) # set ref camera to zero
|
315 |
+
|
316 |
+
cameras = torch.stack(cameras)
|
317 |
+
|
318 |
+
input_img = Image.open(
|
319 |
+
os.path.join(target_dir, f"{ref_index:03d}.png")
|
320 |
+
).convert("RGBA")
|
321 |
+
input_img = do_resize_content(input_img, self.resize_rate)
|
322 |
+
if self.random_background:
|
323 |
+
input_img = add_random_background(input_img, bg_color)
|
324 |
+
input_img = input_img.convert("RGB")
|
325 |
+
|
326 |
+
clip_cond = self.transfrom_clip(input_img)
|
327 |
+
vae_cond = self.transfrom_vae(input_img)
|
328 |
+
|
329 |
+
vae_target = torch.stack(target_images, dim=0)
|
330 |
+
if self.xyz_base is not None:
|
331 |
+
xyz_vae_target = torch.stack(target_xyz_images, dim=0)
|
332 |
+
else:
|
333 |
+
xyz_vae_target = []
|
334 |
+
|
335 |
+
if self.debug:
|
336 |
+
print(f"debug!!,{bg_color}")
|
337 |
+
return {
|
338 |
+
"target_images": raw_images,
|
339 |
+
"target_images_xyz": raw_xyz_images,
|
340 |
+
"input_img": input_img,
|
341 |
+
"cameras": cameras,
|
342 |
+
"caption": caption,
|
343 |
+
"item": self.items[index],
|
344 |
+
"alpha_masks": alpha_masks,
|
345 |
+
}
|
346 |
+
|
347 |
+
if self.split == "train":
|
348 |
+
return {
|
349 |
+
"target_images_vae": vae_target,
|
350 |
+
"target_images_xyz_vae": xyz_vae_target,
|
351 |
+
"clip_cond": clip_cond,
|
352 |
+
"vae_cond": vae_cond,
|
353 |
+
"cameras": cameras,
|
354 |
+
"caption": caption,
|
355 |
+
}
|
356 |
+
else: # eval
|
357 |
+
path = os.path.join(target_dir, f"{ref_index:03d}.png")
|
358 |
+
return dict(
|
359 |
+
path=path,
|
360 |
+
target_dir=target_dir,
|
361 |
+
cond_raw_images=raw_images,
|
362 |
+
cond=input_img,
|
363 |
+
ref_index=ref_index,
|
364 |
+
ident=f"{index}-{Path(target_dir).stem}",
|
365 |
+
)
|
366 |
+
|
367 |
+
|
368 |
+
class DataRelativeStroke(DataHQCRelative):
|
369 |
+
"""a temp dataset for add sync base using fov data as ref image"""
|
370 |
+
|
371 |
+
def __init__(
|
372 |
+
self,
|
373 |
+
base_dir,
|
374 |
+
caption_csv,
|
375 |
+
ref_indexs=[0],
|
376 |
+
ref_position=-1,
|
377 |
+
xyz_base=None,
|
378 |
+
camera_views=[3, 6, 9, 12, 15], # camera views are relative views, not abs
|
379 |
+
split="train",
|
380 |
+
image_size=256,
|
381 |
+
random_background=False,
|
382 |
+
resize_rate=1,
|
383 |
+
num_frames=5,
|
384 |
+
repeat=100,
|
385 |
+
outer_file=None,
|
386 |
+
debug=False,
|
387 |
+
eval_size=100,
|
388 |
+
stroke_p=0.3,
|
389 |
+
resize_range=None,
|
390 |
+
):
|
391 |
+
print(__class__)
|
392 |
+
super().__init__(
|
393 |
+
base_dir,
|
394 |
+
caption_csv,
|
395 |
+
ref_indexs=ref_indexs,
|
396 |
+
ref_position=ref_position,
|
397 |
+
xyz_base=xyz_base,
|
398 |
+
camera_views=camera_views,
|
399 |
+
split=split,
|
400 |
+
image_size=image_size,
|
401 |
+
random_background=random_background,
|
402 |
+
resize_rate=resize_rate,
|
403 |
+
num_frames=num_frames,
|
404 |
+
repeat=repeat,
|
405 |
+
outer_file=outer_file,
|
406 |
+
debug=debug,
|
407 |
+
eval_size=eval_size,
|
408 |
+
)
|
409 |
+
self.stroke_p = stroke_p
|
410 |
+
assert (
|
411 |
+
resize_range is None or len(resize_range) == 2
|
412 |
+
), "resize_range should be a tuple of 2 elements"
|
413 |
+
self.resize_range = resize_range
|
414 |
+
|
415 |
+
def __len__(self):
|
416 |
+
return len(self.items) * self.repeat
|
417 |
+
|
418 |
+
def __getitem__(self, index):
|
419 |
+
index_mapping = self.index_mapping
|
420 |
+
transfroms_mapping = self.transfroms_mapping
|
421 |
+
index = index % len(self.items)
|
422 |
+
|
423 |
+
target_dir = self.items[index]["path"]
|
424 |
+
target_xyz_dir = self.items[index]["xyz_path"]
|
425 |
+
caption = self.items[index]["caption"]
|
426 |
+
|
427 |
+
bg_color = np.random.rand() * 255
|
428 |
+
target_images = []
|
429 |
+
target_xyz_images = []
|
430 |
+
raw_images = []
|
431 |
+
raw_xyz_images = []
|
432 |
+
alpha_masks = []
|
433 |
+
ref_index = random.choice(self.ref_indexs)
|
434 |
+
cur_index_mapping = index_mapping[ref_index]
|
435 |
+
cur_transfroms_mapping = transfroms_mapping[ref_index]
|
436 |
+
cur_xyz_transfroms_mapping = self.xyz_transforms_mapping[ref_index]
|
437 |
+
cur_resize_rate = (
|
438 |
+
random.uniform(*self.resize_range) * self.resize_rate
|
439 |
+
if self.resize_range is not None
|
440 |
+
else self.resize_rate
|
441 |
+
)
|
442 |
+
for relative_view in self.camera_views:
|
443 |
+
image_index = cur_index_mapping[relative_view]
|
444 |
+
trans = cur_transfroms_mapping[relative_view]
|
445 |
+
trans_xyz = cur_xyz_transfroms_mapping[relative_view]
|
446 |
+
# open
|
447 |
+
img = Image.open(
|
448 |
+
os.path.join(target_dir, f"{image_index:03d}.png")
|
449 |
+
).convert("RGBA")
|
450 |
+
if trans is not None:
|
451 |
+
img = trans(img)
|
452 |
+
img = do_resize_content(img, cur_resize_rate)
|
453 |
+
alpha_mask = img.getchannel("A")
|
454 |
+
alpha_masks.append(alpha_mask)
|
455 |
+
if self.random_background:
|
456 |
+
img = add_random_background(img, bg_color)
|
457 |
+
|
458 |
+
img = img.convert("RGB")
|
459 |
+
target_images.append(self.transfrom_vae(img))
|
460 |
+
raw_images.append(img)
|
461 |
+
|
462 |
+
if self.xyz_base is not None:
|
463 |
+
img_xyz = Image.open(
|
464 |
+
os.path.join(target_xyz_dir, f"xyz_new_{image_index:03d}.png")
|
465 |
+
).convert("RGBA")
|
466 |
+
img_xyz = trans_xyz(img_xyz) if trans_xyz is not None else img_xyz
|
467 |
+
img_xyz = trans(img_xyz) if trans is not None else img_xyz
|
468 |
+
img_xyz = do_resize_content(img_xyz, cur_resize_rate)
|
469 |
+
img_xyz.putalpha(alpha_mask)
|
470 |
+
if self.random_background:
|
471 |
+
img_xyz = add_random_background(img_xyz, bg_color)
|
472 |
+
img_xyz = img_xyz.convert("RGB")
|
473 |
+
target_xyz_images.append(self.transfrom_vae(img_xyz))
|
474 |
+
if self.debug:
|
475 |
+
raw_xyz_images.append(img_xyz)
|
476 |
+
|
477 |
+
cameras = [get_camera_for_index(i).squeeze() for i in self.camera_views]
|
478 |
+
if self.ref_position is not None:
|
479 |
+
cameras[self.ref_position] = torch.zeros_like(
|
480 |
+
cameras[self.ref_position]
|
481 |
+
) # set ref camera to zero
|
482 |
+
|
483 |
+
cameras = torch.stack(cameras)
|
484 |
+
|
485 |
+
input_img = Image.open(
|
486 |
+
os.path.join(target_dir, f"{ref_index:03d}.png")
|
487 |
+
).convert("RGBA")
|
488 |
+
input_img = do_resize_content(input_img, cur_resize_rate)
|
489 |
+
if random.random() < self.stroke_p:
|
490 |
+
## random rgb color
|
491 |
+
color = (
|
492 |
+
random.randint(0, 255),
|
493 |
+
random.randint(0, 255),
|
494 |
+
random.randint(0, 255),
|
495 |
+
)
|
496 |
+
radius = random.randint(1, 3)
|
497 |
+
input_img = add_stroke(input_img, color=color, stroke_radius=radius)
|
498 |
+
if self.random_background:
|
499 |
+
input_img = add_random_background(input_img, bg_color)
|
500 |
+
input_img = input_img.convert("RGB")
|
501 |
+
|
502 |
+
clip_cond = self.transfrom_clip(input_img)
|
503 |
+
vae_cond = self.transfrom_vae(input_img)
|
504 |
+
|
505 |
+
vae_target = torch.stack(target_images, dim=0)
|
506 |
+
if self.xyz_base is not None:
|
507 |
+
xyz_vae_target = torch.stack(target_xyz_images, dim=0)
|
508 |
+
else:
|
509 |
+
xyz_vae_target = []
|
510 |
+
|
511 |
+
if self.debug:
|
512 |
+
print(f"debug!!,{bg_color}")
|
513 |
+
return {
|
514 |
+
"target_images": raw_images,
|
515 |
+
"target_images_xyz": raw_xyz_images,
|
516 |
+
"input_img": input_img,
|
517 |
+
"cameras": cameras,
|
518 |
+
"caption": caption,
|
519 |
+
"item": self.items[index],
|
520 |
+
"alpha_masks": alpha_masks,
|
521 |
+
"cur_resize_rate": cur_resize_rate,
|
522 |
+
}
|
523 |
+
|
524 |
+
if self.split == "train":
|
525 |
+
return {
|
526 |
+
"target_images_vae": vae_target,
|
527 |
+
"target_images_xyz_vae": xyz_vae_target,
|
528 |
+
"clip_cond": clip_cond,
|
529 |
+
"vae_cond": vae_cond,
|
530 |
+
"cameras": cameras,
|
531 |
+
"caption": caption,
|
532 |
+
}
|
533 |
+
else: # eval
|
534 |
+
path = os.path.join(target_dir, f"{ref_index:03d}.png")
|
535 |
+
return dict(
|
536 |
+
path=path,
|
537 |
+
target_dir=target_dir,
|
538 |
+
cond_raw_images=raw_images,
|
539 |
+
cond=input_img,
|
540 |
+
ref_index=ref_index,
|
541 |
+
ident=f"{index}-{Path(target_dir).stem}",
|
542 |
+
)
|
543 |
+
|
544 |
+
|
545 |
+
class InTheWildImages(Dataset):
|
546 |
+
"""
|
547 |
+
a data set for in the wild images,
|
548 |
+
receive base floders, image path ls, path files as input
|
549 |
+
"""
|
550 |
+
|
551 |
+
def __init__(self, base_dirs=[], image_paths=[], path_files=[]):
|
552 |
+
print(__class__)
|
553 |
+
self.base_dirs = base_dirs
|
554 |
+
self.image_paths = image_paths
|
555 |
+
self.path_files = path_files
|
556 |
+
self.init_item()
|
557 |
+
|
558 |
+
def init_item(self):
|
559 |
+
items = []
|
560 |
+
for d in self.base_dirs:
|
561 |
+
items += [osp.join(d, f) for f in os.listdir(d)]
|
562 |
+
items = items + self.image_paths
|
563 |
+
|
564 |
+
for file in self.path_files:
|
565 |
+
with open(file, "r") as f:
|
566 |
+
items += [line.strip() for line in f.readlines()]
|
567 |
+
items.sort()
|
568 |
+
self.items = items
|
569 |
+
|
570 |
+
def __len__(self):
|
571 |
+
return len(self.items)
|
572 |
+
|
573 |
+
def __getitem__(self, index):
|
574 |
+
item = self.items[index]
|
575 |
+
img = Image.open(item)
|
576 |
+
background = Image.new("RGBA", img.size, (0, 0, 0, 0))
|
577 |
+
cond = Image.alpha_composite(background, img)
|
578 |
+
return dict(
|
579 |
+
path=item, ident=f"{index}-{Path(item).stem}", cond=cond.convert("RGB")
|
580 |
+
)
|