Spaces:
Runtime error
Runtime error
File size: 3,976 Bytes
63f9eaa 4179233 63f9eaa ca7b7fb 63f9eaa 4179233 63f9eaa 4179233 63f9eaa 4179233 63f9eaa 4179233 63f9eaa 7341cb3 4179233 7341cb3 4179233 7341cb3 4179233 c1385ec 4179233 3d454b3 4179233 63f9eaa 4179233 63f9eaa 45aca14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import os
import pandas as pd
import plotly.io as pio
import clustering
from dotenv import load_dotenv
from flask import Flask, render_template, request
import logging
if os.getenv("HUGGINGFACE_HUB_CACHE") is None:
load_dotenv()
api_key = os.getenv("youtube_api_key")
app = Flask(__name__)
app.logger.setLevel(logging.ERROR)
app.config["PROPAGATE_EXCEPTIONS"] = False
RANDOM_STATE = 333
def convert_graph_to_html(graph, full_html=False):
return pio.to_html(graph, full_html=full_html) if graph else None
@app.route("/", methods=["GET", "POST"])
def index():
video_details = None
k_distance_graph = None
scores_graph = None
sankey_graph = None
image_path = None
sentiment_daily_graph = None
sentiment_count = None
current_directory = os.getcwd()
print("Directorio de trabajo actual:", current_directory)
if request.method == "POST":
url = request.form["url"]
if url:
video_details = clustering.get_youtube_video_details(url, api_key)
comments_df = clustering.get_youtube_comments(api_key, url)
comments_df = clustering.add_normalized_embeddings_to_dataframe(
comments_df, "comment"
)
comments_df["published_at"] = pd.to_datetime(
comments_df["published_at"]
).dt.date
comments_df = clustering.classify_sentiment_df(comments_df)
comments_df.to_pickle(
"./data/Comentarios-Youtube/comments_df.pkl"
)
comments_df = pd.read_pickle(
"./data/Comentarios-Youtube/comments_df.pkl"
)
sentiment_count = comments_df["sentimiento"].value_counts().to_dict()
sentiment_daily_graph = clustering.plot_sentiment_daily(comments_df)
sentiment_daily_graph = convert_graph_to_html(sentiment_daily_graph)
umap_df, min_eps, max_eps = clustering.transform_embeddings(
comments_df, embeddings_col="embeddings"
)
image_path = os.path.join("static", "wordcloud.png")
clustering.plot_wordcloud(comments_df, text_column="comment", output_filename=image_path)
total = comments_df.shape[0]
min_items_by_cluster = clustering.determine_min_items_by_cluster(total)
(
cluster_assignments,
cluster_counts,
calinski_harabasz_scores,
silhouette_scores,
most_similar_comments,
umap_df,
) = clustering.perform_clustering(
umap_df, min_eps, max_eps, n=10,
threshold_values=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
embeddings_col="embeddings"
)
labels, source, target, values, comments = clustering.build_sankey_data(
cluster_assignments,
cluster_counts,
most_similar_comments,
min_items_by_cluster=min_items_by_cluster,
)
sankey_graph = clustering.plot_sankey(
labels, source, target, values, comments, height=1000, width=1200
)
sankey_graph = convert_graph_to_html(sankey_graph)
scores_graph, _ = clustering.plot_clustering_metric(
silhouette_scores, calinski_harabasz_scores
)
scores_graph = convert_graph_to_html(scores_graph)
return render_template(
"index.html",
video_details=video_details,
k_distance_graph=k_distance_graph,
sankey_graph=sankey_graph,
scores_graph=scores_graph,
wordcloud_path=image_path,
sentiment_daily_graph=sentiment_daily_graph,
sentiment_count=sentiment_count,
)
# gunicorn -b 0.0.0.0:5000 app_clustering.app:app
# http://172.20.0.2:5000/
# http://0.0.0.0:5000/
if __name__ == "__main__":
app.run(host='0.0.0.0', port=7860) |