Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly.io as pio
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from app_clustering import clustering
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
|
| 8 |
+
if os.getenv("HUGGINGFACE_HUB_CACHE") is None:
|
| 9 |
+
load_dotenv()
|
| 10 |
+
|
| 11 |
+
api_key = os.getenv("youtube_api_key")
|
| 12 |
+
|
| 13 |
+
RANDOM_STATE = 333
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def convert_graph_to_html(graph, full_html=False):
|
| 17 |
+
return pio.to_html(graph, full_html=full_html) if graph else None
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def process_video(url):
|
| 21 |
+
video_details = None
|
| 22 |
+
sentiment_daily_graph = None
|
| 23 |
+
sentiment_count = None
|
| 24 |
+
sankey_graph = None
|
| 25 |
+
scores_graph = None
|
| 26 |
+
|
| 27 |
+
if url:
|
| 28 |
+
video_details = clustering.get_youtube_video_details(url, api_key)
|
| 29 |
+
comments_df = clustering.get_youtube_comments(api_key, url)
|
| 30 |
+
comments_df = clustering.add_normalized_embeddings_to_dataframe(comments_df, "comment")
|
| 31 |
+
comments_df["published_at"] = pd.to_datetime(comments_df["published_at"]).dt.date
|
| 32 |
+
comments_df = clustering.classify_sentiment_df(comments_df)
|
| 33 |
+
|
| 34 |
+
# Sentiment count
|
| 35 |
+
sentiment_count = comments_df["sentimiento"].value_counts().to_dict()
|
| 36 |
+
|
| 37 |
+
# Plot daily sentiment
|
| 38 |
+
sentiment_daily_graph = clustering.plot_sentiment_daily(comments_df)
|
| 39 |
+
sentiment_daily_graph_html = convert_graph_to_html(sentiment_daily_graph)
|
| 40 |
+
|
| 41 |
+
umap_df, min_eps, max_eps = clustering.transform_embeddings(comments_df, embeddings_col="embeddings")
|
| 42 |
+
total = comments_df.shape[0]
|
| 43 |
+
min_items_by_cluster = clustering.determine_min_items_by_cluster(total)
|
| 44 |
+
|
| 45 |
+
cluster_assignments, cluster_counts, calinski_harabasz_scores, silhouette_scores, most_similar_comments, umap_df = clustering.perform_clustering(
|
| 46 |
+
umap_df, min_eps, max_eps, n=10, embeddings_col="embeddings"
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Build Sankey data and plot
|
| 50 |
+
labels, source, target, values, comments = clustering.build_sankey_data(
|
| 51 |
+
cluster_assignments, cluster_counts, most_similar_comments, min_items_by_cluster=min_items_by_cluster
|
| 52 |
+
)
|
| 53 |
+
sankey_graph = clustering.plot_sankey(labels, source, target, values, comments, height=1000, width=1200)
|
| 54 |
+
sankey_graph_html = convert_graph_to_html(sankey_graph)
|
| 55 |
+
|
| 56 |
+
# Plot clustering metrics
|
| 57 |
+
scores_graph, _ = clustering.plot_clustering_metric(silhouette_scores, calinski_harabasz_scores)
|
| 58 |
+
scores_graph_html = convert_graph_to_html(scores_graph)
|
| 59 |
+
|
| 60 |
+
return video_details, sentiment_daily_graph_html, sentiment_count, sankey_graph_html, scores_graph_html
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
# Gradio Interface
|
| 64 |
+
iface = gr.Interface(
|
| 65 |
+
fn=process_video,
|
| 66 |
+
inputs=gr.inputs.Textbox(label="YouTube Video URL", placeholder="Ingresa la URL del video..."),
|
| 67 |
+
outputs=[
|
| 68 |
+
gr.outputs.JSON(label="Video Details"),
|
| 69 |
+
gr.outputs.HTML(label="Sentiment Daily Graph"),
|
| 70 |
+
gr.outputs.JSON(label="Sentiment Count"),
|
| 71 |
+
gr.outputs.HTML(label="Sankey Graph"),
|
| 72 |
+
gr.outputs.HTML(label="Clustering Scores Graph")
|
| 73 |
+
],
|
| 74 |
+
title="YouTube Video Sentiment Analysis",
|
| 75 |
+
description="Ingresa la URL de un video de YouTube para analizar los comentarios y visualizar los resultados."
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
if __name__ == "__main__":
|
| 79 |
+
iface.launch()
|