Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,21 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import plotly.io as pio
|
| 4 |
-
|
| 5 |
-
import clustering
|
| 6 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
| 7 |
|
| 8 |
if os.getenv("HUGGINGFACE_HUB_CACHE") is None:
|
| 9 |
load_dotenv()
|
| 10 |
|
| 11 |
api_key = os.getenv("youtube_api_key")
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
RANDOM_STATE = 333
|
| 14 |
|
| 15 |
|
|
@@ -17,63 +23,94 @@ def convert_graph_to_html(graph, full_html=False):
|
|
| 17 |
return pio.to_html(graph, full_html=full_html) if graph else None
|
| 18 |
|
| 19 |
|
| 20 |
-
|
|
|
|
| 21 |
video_details = None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
sentiment_daily_graph = None
|
| 23 |
sentiment_count = None
|
| 24 |
-
sankey_graph = None
|
| 25 |
-
scores_graph = None
|
| 26 |
|
| 27 |
-
if
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
|
|
|
|
|
|
|
|
|
| 78 |
if __name__ == "__main__":
|
| 79 |
-
|
|
|
|
| 1 |
import os
|
| 2 |
+
|
| 3 |
import pandas as pd
|
| 4 |
import plotly.io as pio
|
| 5 |
+
from app_clustering import clustering
|
|
|
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
+
from flask import Flask, render_template, request
|
| 8 |
+
import logging
|
| 9 |
|
| 10 |
if os.getenv("HUGGINGFACE_HUB_CACHE") is None:
|
| 11 |
load_dotenv()
|
| 12 |
|
| 13 |
api_key = os.getenv("youtube_api_key")
|
| 14 |
|
| 15 |
+
app = Flask(__name__)
|
| 16 |
+
app.logger.setLevel(logging.ERROR)
|
| 17 |
+
app.config["PROPAGATE_EXCEPTIONS"] = False
|
| 18 |
+
|
| 19 |
RANDOM_STATE = 333
|
| 20 |
|
| 21 |
|
|
|
|
| 23 |
return pio.to_html(graph, full_html=full_html) if graph else None
|
| 24 |
|
| 25 |
|
| 26 |
+
@app.route("/", methods=["GET", "POST"])
|
| 27 |
+
def index():
|
| 28 |
video_details = None
|
| 29 |
+
k_distance_graph = None
|
| 30 |
+
scores_graph = None
|
| 31 |
+
sankey_graph = None
|
| 32 |
+
image_path = None
|
| 33 |
sentiment_daily_graph = None
|
| 34 |
sentiment_count = None
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
if request.method == "POST":
|
| 37 |
+
url = request.form["url"]
|
| 38 |
+
if url:
|
| 39 |
+
video_details = clustering.get_youtube_video_details(url, api_key)
|
| 40 |
+
comments_df = clustering.get_youtube_comments(api_key, url)
|
| 41 |
+
comments_df = clustering.add_normalized_embeddings_to_dataframe(
|
| 42 |
+
comments_df, "comment"
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
comments_df["published_at"] = pd.to_datetime(
|
| 46 |
+
comments_df["published_at"]
|
| 47 |
+
).dt.date
|
| 48 |
+
|
| 49 |
+
comments_df = clustering.classify_sentiment_df(comments_df)
|
| 50 |
+
comments_df.to_pickle(
|
| 51 |
+
"/workspace/app_clustering/data/Comentarios-Youtube/comments_df.pkl"
|
| 52 |
+
)
|
| 53 |
+
comments_df = pd.read_pickle(
|
| 54 |
+
"/workspace/app_clustering/data/Comentarios-Youtube/comments_df.pkl"
|
| 55 |
+
)
|
| 56 |
+
sentiment_count = comments_df["sentimiento"].value_counts().to_dict()
|
| 57 |
+
sentiment_daily_graph = clustering.plot_sentiment_daily(comments_df)
|
| 58 |
+
|
| 59 |
+
sentiment_daily_graph = convert_graph_to_html(sentiment_daily_graph)
|
| 60 |
+
|
| 61 |
+
umap_df, min_eps, max_eps = clustering.transform_embeddings(
|
| 62 |
+
comments_df, embeddings_col="embeddings"
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
# image_path = os.path.join(os.getcwd(), "static/wordcloud.png")
|
| 66 |
+
# print("path", image_path)
|
| 67 |
+
|
| 68 |
+
total = comments_df.shape[0]
|
| 69 |
+
|
| 70 |
+
min_items_by_cluster = clustering.determine_min_items_by_cluster(total)
|
| 71 |
+
|
| 72 |
+
(
|
| 73 |
+
cluster_assignments,
|
| 74 |
+
cluster_counts,
|
| 75 |
+
calinski_harabasz_scores,
|
| 76 |
+
silhouette_scores,
|
| 77 |
+
most_similar_comments,
|
| 78 |
+
umap_df,
|
| 79 |
+
) = clustering.perform_clustering(
|
| 80 |
+
umap_df, min_eps, max_eps, n=10, embeddings_col="embeddings"
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
labels, source, target, values, comments = clustering.build_sankey_data(
|
| 84 |
+
cluster_assignments,
|
| 85 |
+
cluster_counts,
|
| 86 |
+
most_similar_comments,
|
| 87 |
+
min_items_by_cluster=min_items_by_cluster,
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
sankey_graph = clustering.plot_sankey(
|
| 91 |
+
labels, source, target, values, comments, height=1000, width=1200
|
| 92 |
+
)
|
| 93 |
+
sankey_graph = convert_graph_to_html(sankey_graph)
|
| 94 |
+
|
| 95 |
+
scores_graph, _ = clustering.plot_clustering_metric(
|
| 96 |
+
silhouette_scores, calinski_harabasz_scores
|
| 97 |
+
)
|
| 98 |
+
scores_graph = convert_graph_to_html(scores_graph)
|
| 99 |
+
|
| 100 |
+
return render_template(
|
| 101 |
+
"index.html",
|
| 102 |
+
video_details=video_details,
|
| 103 |
+
k_distance_graph=k_distance_graph,
|
| 104 |
+
sankey_graph=sankey_graph,
|
| 105 |
+
scores_graph=scores_graph,
|
| 106 |
+
wordcloud_path=image_path,
|
| 107 |
+
sentiment_daily_graph=sentiment_daily_graph,
|
| 108 |
+
sentiment_count=sentiment_count,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
|
| 112 |
+
# gunicorn -b 0.0.0.0:5000 app_clustering.app:app
|
| 113 |
+
# http://172.20.0.2:5000/
|
| 114 |
+
# http://0.0.0.0:5000/
|
| 115 |
if __name__ == "__main__":
|
| 116 |
+
app.run()
|