Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,362 Bytes
5d52c32 6c226f9 d790c0b 88183ad 1e8d252 6cd6646 e19d3c8 6c226f9 e19d3c8 17f14b2 e19d3c8 6c226f9 e19d3c8 6c226f9 5d52c32 3da85d4 e19d3c8 1e8d252 3845c66 6cd6646 baba70b 2bf1d0a e19d3c8 3845c66 2bf1d0a e19d3c8 f22a1c2 1e8d252 3845c66 e19d3c8 3da85d4 3df1d51 c3799a0 e19d3c8 1e8d252 e19d3c8 3da85d4 41e81ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import spaces
import torch
import gradio as gr
import tempfile
import os
import uuid
import scipy.io.wavfile
import time
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, WhisperTokenizer, pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16
MODEL_NAME = "ylacombe/whisper-large-v3-turbo"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
MODEL_NAME, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(MODEL_NAME)
tokenizer = WhisperTokenizer.from_pretrained(MODEL_NAME, language="en")
pipe = pipeline(
task="automatic-speech-recognition",
model=model,
tokenizer=tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=25,
torch_dtype=torch_dtype,
device=device,
)
@spaces.GPU
def transcribe(inputs, previous_transcription):
start_time = time.time()
try:
filename = f"{uuid.uuid4().hex}.wav"
sample_rate, audio_data = inputs
scipy.io.wavfile.write(filename, sample_rate, audio_data)
transcription = pipe(filename)["text"]
previous_transcription += transcription
end_time = time.time()
latency = end_time - start_time
return previous_transcription, f"{latency:.2f}"
except Exception as e:
print(f"Error during Transcription: {e}")
return previous_transcription, "Error"
def clear():
return ""
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown(f"# Realtime Whisper Large V3 Turbo: \n Transcribe Audio in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.\n Note: The first token takes about 5 seconds. After that, it works flawlessly.")
with gr.Row():
input_audio_microphone = gr.Audio(streaming=True)
output = gr.Textbox(label="Transcription", value="")
latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0", scale=0)
with gr.Row():
clear_button = gr.Button("Clear Output")
input_audio_microphone.stream(transcribe, [input_audio_microphone, output], [output, latency_textbox], time_limit=45, stream_every=2, concurrency_limit=None)
clear_button.click(clear, outputs=[output])
demo.launch() |