Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,10 +6,9 @@ import tempfile
|
|
6 |
import os
|
7 |
import uuid
|
8 |
import scipy.io.wavfile
|
9 |
-
import numpy as np
|
10 |
|
11 |
MODEL_NAME = "ylacombe/whisper-large-v3-turbo"
|
12 |
-
BATCH_SIZE =
|
13 |
device = 0 if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
pipe = pipeline(
|
@@ -22,31 +21,34 @@ pipe = pipeline(
|
|
22 |
@spaces.GPU
|
23 |
def transcribe(inputs, previous_transcription):
|
24 |
try:
|
|
|
|
|
|
|
|
|
|
|
25 |
sample_rate, audio_data = inputs
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
|
30 |
-
#
|
31 |
-
transcription = pipe(
|
32 |
-
|
33 |
-
generate_kwargs={"task": "transcribe"},
|
34 |
-
return_timestamps=True)
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
|
39 |
return previous_transcription
|
40 |
except Exception as e:
|
41 |
-
print(f"Error during
|
42 |
-
return
|
43 |
|
44 |
with gr.Blocks() as demo:
|
45 |
with gr.Column():
|
46 |
-
gr.Markdown(f"# Realtime Whisper Large V3 Turbo: Transcribe Audio\n Transcribe
|
47 |
input_audio_microphone = gr.Audio(streaming=True)
|
48 |
output = gr.Textbox(label="Transcription", value="")
|
49 |
|
50 |
input_audio_microphone.stream(transcribe, [input_audio_microphone, output], [output], time_limit=45, stream_every=2, concurrency_limit=None)
|
51 |
|
52 |
-
demo.queue().launch()
|
|
|
6 |
import os
|
7 |
import uuid
|
8 |
import scipy.io.wavfile
|
|
|
9 |
|
10 |
MODEL_NAME = "ylacombe/whisper-large-v3-turbo"
|
11 |
+
BATCH_SIZE = 16
|
12 |
device = 0 if torch.cuda.is_available() else "cpu"
|
13 |
|
14 |
pipe = pipeline(
|
|
|
21 |
@spaces.GPU
|
22 |
def transcribe(inputs, previous_transcription):
|
23 |
try:
|
24 |
+
# Generate a unique filename Using UUID
|
25 |
+
filename = f"{uuid.uuid4().hex}.wav"
|
26 |
+
filepath = os.path.join(tempfile.gettempdir(), filename)
|
27 |
+
|
28 |
+
# Extract Sample Rate and Audio Data from the Tuple
|
29 |
sample_rate, audio_data = inputs
|
30 |
|
31 |
+
# Save the Audio Data to the Temporary File
|
32 |
+
scipy.io.wavfile.write(filepath, sample_rate, audio_data)
|
33 |
|
34 |
+
# Transcribe the Audio
|
35 |
+
transcription = pipe(filepath, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
|
36 |
+
previous_transcription += transcription
|
|
|
|
|
37 |
|
38 |
+
# Remove the Temporary File after Transcription
|
39 |
+
os.remove(filepath)
|
40 |
|
41 |
return previous_transcription
|
42 |
except Exception as e:
|
43 |
+
print(f"Error during Transcription: {e}")
|
44 |
+
return previous Transcription
|
45 |
|
46 |
with gr.Blocks() as demo:
|
47 |
with gr.Column():
|
48 |
+
gr.Markdown(f"# Realtime Whisper Large V3 Turbo: Transcribe Audio\n Transcribe Inputs in Realtime. This Demo uses the Checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers.")
|
49 |
input_audio_microphone = gr.Audio(streaming=True)
|
50 |
output = gr.Textbox(label="Transcription", value="")
|
51 |
|
52 |
input_audio_microphone.stream(transcribe, [input_audio_microphone, output], [output], time_limit=45, stream_every=2, concurrency_limit=None)
|
53 |
|
54 |
+
demo.queue(). launch()
|