KingNish commited on
Commit
3da85d4
·
verified ·
1 Parent(s): e7722c4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -125
app.py CHANGED
@@ -1,147 +1,40 @@
1
  import spaces
2
  import torch
3
-
4
  import gradio as gr
5
- import yt_dlp as youtube_dl
6
  from transformers import pipeline
7
  from transformers.pipelines.audio_utils import ffmpeg_read
8
-
9
  import tempfile
10
  import os
11
 
12
  MODEL_NAME = "ylacombe/whisper-large-v3-turbo"
13
  BATCH_SIZE = 8
14
- FILE_LIMIT_MB = 1000
15
- YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
16
-
17
  device = 0 if torch.cuda.is_available() else "cpu"
18
 
19
  pipe = pipeline(
20
  task="automatic-speech-recognition",
21
  model=MODEL_NAME,
22
- chunk_length_s=30,
23
  device=device,
24
  )
25
 
26
-
27
  @spaces.GPU
28
- def transcribe(inputs, task):
29
- if inputs is None:
30
- raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
31
-
32
- text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
33
- return text
34
-
35
-
36
- def _return_yt_html_embed(yt_url):
37
- video_id = yt_url.split("?v=")[-1]
38
- HTML_str = (
39
- f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
40
- " </center>"
 
 
 
 
41
  )
42
- return HTML_str
43
-
44
- def download_yt_audio(yt_url, filename):
45
- info_loader = youtube_dl.YoutubeDL()
46
-
47
- try:
48
- info = info_loader.extract_info(yt_url, download=False)
49
- except youtube_dl.utils.DownloadError as err:
50
- raise gr.Error(str(err))
51
-
52
- file_length = info["duration_string"]
53
- file_h_m_s = file_length.split(":")
54
- file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
55
-
56
- if len(file_h_m_s) == 1:
57
- file_h_m_s.insert(0, 0)
58
- if len(file_h_m_s) == 2:
59
- file_h_m_s.insert(0, 0)
60
- file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
61
-
62
- if file_length_s > YT_LENGTH_LIMIT_S:
63
- yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
64
- file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
65
- raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
66
-
67
- ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
68
-
69
- with youtube_dl.YoutubeDL(ydl_opts) as ydl:
70
- try:
71
- ydl.download([yt_url])
72
- except youtube_dl.utils.ExtractorError as err:
73
- raise gr.Error(str(err))
74
-
75
- @spaces.GPU
76
- def yt_transcribe(yt_url, task, max_filesize=75.0):
77
- html_embed_str = _return_yt_html_embed(yt_url)
78
-
79
- with tempfile.TemporaryDirectory() as tmpdirname:
80
- filepath = os.path.join(tmpdirname, "video.mp4")
81
- download_yt_audio(yt_url, filepath)
82
- with open(filepath, "rb") as f:
83
- inputs = f.read()
84
-
85
- inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
86
- inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
87
-
88
- text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
89
-
90
- return html_embed_str, text
91
-
92
-
93
- demo = gr.Blocks()
94
-
95
- mf_transcribe = gr.Interface(
96
- fn=transcribe,
97
- inputs=[
98
- gr.Audio(sources="microphone", type="filepath"),
99
- gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
100
- ],
101
- outputs="text",
102
- title="Whisper Large V3 Turbo: Transcribe Audio",
103
- description=(
104
- "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
105
- f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
106
- " of arbitrary length."
107
- ),
108
- allow_flagging="never",
109
- )
110
-
111
- file_transcribe = gr.Interface(
112
- fn=transcribe,
113
- inputs=[
114
- gr.Audio(sources="upload", type="filepath", label="Audio file"),
115
- gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
116
- ],
117
- outputs="text",
118
- title="Whisper Large V3: Transcribe Audio",
119
- description=(
120
- "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
121
- f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
122
- " of arbitrary length."
123
- ),
124
- allow_flagging="never",
125
- )
126
-
127
- yt_transcribe = gr.Interface(
128
- fn=yt_transcribe,
129
- inputs=[
130
- gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
131
- gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
132
- ],
133
- outputs=["html", "text"],
134
- title="Whisper Large V3: Transcribe YouTube",
135
- description=(
136
- "Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
137
- f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
138
- " arbitrary length."
139
- ),
140
- allow_flagging="never",
141
- )
142
-
143
- with demo:
144
- gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
145
 
146
  demo.queue().launch()
147
-
 
1
  import spaces
2
  import torch
 
3
  import gradio as gr
 
4
  from transformers import pipeline
5
  from transformers.pipelines.audio_utils import ffmpeg_read
 
6
  import tempfile
7
  import os
8
 
9
  MODEL_NAME = "ylacombe/whisper-large-v3-turbo"
10
  BATCH_SIZE = 8
 
 
 
11
  device = 0 if torch.cuda.is_available() else "cpu"
12
 
13
  pipe = pipeline(
14
  task="automatic-speech-recognition",
15
  model=MODEL_NAME,
16
+ chunk_length_s=1,
17
  device=device,
18
  )
19
 
 
20
  @spaces.GPU
21
+ def transcribe(inputs, previous_transcription):
22
+ text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
23
+ if previous_transcription:
24
+ text = previous_transcription + text
25
+ return text
26
+
27
+ with gr.Blocks() as demo:
28
+ input_audio = gr.Audio(streaming=True),
29
+ output = gr.Textbox("Transcription")
30
+
31
+ input_audio.stream(
32
+ transcribe,
33
+ [input_audio, output],
34
+ [output],
35
+ time_limit=15,
36
+ stream_every=0.5,
37
+ concurrency_limit=None
38
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
  demo.queue().launch()