Spaces:
Sleeping
Sleeping
File size: 13,504 Bytes
b537b52 6c3d54e 760e479 c3d3e4f 92259fe 8279a84 c3d3e4f bc45e1c bec57ee b9de5dd c3d3e4f 0fc12b1 3f3d5c8 c3d3e4f 3f3d5c8 c3d3e4f 92259fe c3d3e4f 3f3d5c8 c3d3e4f 92259fe 760e479 fc7eb6d b537b52 fc7eb6d b537b52 92259fe d2afb6a 92259fe d2afb6a 92259fe c3d3e4f d6827bc 92259fe d6827bc 92259fe d6827bc 92259fe d6827bc 92259fe c3d3e4f b9de5dd bfb8cef 7ad160a bfb8cef 92307a4 bfb8cef 7ad160a bfb8cef b537b52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
# β
Patched full version of app.py with isolated tts_split per model
import sys
import logging
import os
import json
import torch
import argparse
import commons
import utils
import gradio as gr
import numpy as np
import librosa
import re_matching
from tools.sentence import split_by_language
from huggingface_hub import hf_hub_download, list_repo_files
from clap_wrapper import get_clap_audio_feature, get_clap_text_feature
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s")
logger = logging.getLogger(__name__)
def get_net_g(model_path: str, version: str, device: str, hps):
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
return net_g
def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7):
style_text = None if style_text == "" else style_text
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str, device, style_text, style_weight)
del word2ph
assert bert.shape[-1] == len(phone)
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, phone, tone, language
def infer(*args, **kwargs):
from infer import infer as real_infer
return real_infer(*args, **kwargs)
def tts_split(
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,
language, cut_by_sent, interval_between_para, interval_between_sent,
reference_audio, emotion, style_text, style_weight,
hps, net_g, device
):
if style_text == "":
style_text = None
if language == "mix":
return ("'mix' not supported in this simplified split function", None)
while text.find("\n\n") != -1:
text = text.replace("\n\n", "\n")
para_list = re_matching.cut_para(text)
audio_list = []
with torch.no_grad():
if cut_by_sent:
for pidx, p in enumerate(para_list):
sent_list = re_matching.cut_sent(p)
for sidx, s in enumerate(sent_list):
skip_start = not (pidx == 0 and sidx == 0)
skip_end = not (pidx == len(para_list) - 1 and sidx == len(sent_list) - 1)
audio = infer(
s,
reference_audio=reference_audio,
emotion=emotion,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
language=language,
hps=hps,
net_g=net_g,
device=device,
style_text=style_text,
style_weight=style_weight,
skip_start=skip_start,
skip_end=skip_end,
)
audio_list.append(audio)
audio_list.append(np.zeros((int)(hps.data.sampling_rate * interval_between_sent), dtype=np.int16))
if (interval_between_para - interval_between_sent) > 0:
audio_list.append(np.zeros((int)(hps.data.sampling_rate * (interval_between_para - interval_between_sent)), dtype=np.int16))
else:
for idx, p in enumerate(para_list):
skip_start = idx != 0
skip_end = idx != len(para_list) - 1
audio = infer(
p,
reference_audio=reference_audio,
emotion=emotion,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
language=language,
hps=hps,
net_g=net_g,
device=device,
style_text=style_text,
style_weight=style_weight,
skip_start=skip_start,
skip_end=skip_end,
)
audio_list.append(audio)
audio_list.append(np.zeros((int)(hps.data.sampling_rate * interval_between_para), dtype=np.int16))
final_audio = np.concatenate(audio_list)
return "Success", (hps.data.sampling_rate, final_audio)
def create_split_fn(hps, net_g, device):
def split_fn(
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,
language, cut_by_sent, interval_between_para, interval_between_sent,
reference_audio, emotion, style_text, style_weight
):
return tts_split(
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,
language, cut_by_sent, interval_between_para, interval_between_sent,
reference_audio, emotion, style_text, style_weight,
hps=hps, net_g=net_g, device=device
)
return split_fn
def load_audio(path):
audio, sr = librosa.load(path, 48000)
return sr, audio
def gr_util(item):
if item == "Text prompt":
return {"visible": True, "__type__": "update"}, {"visible": False, "__type__": "update"}
else:
return {"visible": False, "__type__": "update"}, {"visible": True, "__type__": "update"}
def create_tts_fn(hps, net_g, device):
def tts_fn(
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language,
reference_audio, emotion, prompt_mode, style_text, style_weight
):
if style_text == "":
style_text = None
if prompt_mode == "Audio prompt":
if reference_audio is None:
return ("Invalid audio prompt", None)
else:
reference_audio = load_audio(reference_audio)[1]
else:
reference_audio = None
audio = infer(
text=text,
reference_audio=reference_audio,
emotion=emotion,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
language=language,
hps=hps,
net_g=net_g,
device=device,
style_text=style_text,
style_weight=style_weight,
)
return "Success", (hps.data.sampling_rate, audio)
return tts_fn
# Function to build a single tab per model
def create_tab(name,title, example, speakers, tts_fn, split_fn, repid):
with gr.TabItem(name):
gr.Markdown(
'<div align="center">'
f'<a><strong>{repid}</strong></a>'
f'<br>'
f'<a><strong>{title}</strong></a>'
f'</div>'
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input text", lines=5, value=example)
speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="Speaker")
prompt_mode = gr.Radio(["Text prompt", "Audio prompt"], label="Prompt Mode", value="Text prompt")
text_prompt = gr.Textbox(label="Text prompt", value="Happy", visible=True)
audio_prompt = gr.Audio(label="Audio prompt", type="filepath", visible=False)
sdp_ratio = gr.Slider(0, 1, 0.2, 0.1, label="SDP Ratio")
noise_scale = gr.Slider(0.1, 2.0, 0.6, 0.1, label="Noise")
noise_scale_w = gr.Slider(0.1, 2.0, 0.8, 0.1, label="Noise_W")
length_scale = gr.Slider(0.1, 2.0, 1.0, 0.1, label="Length")
language = gr.Dropdown(choices=["JP", "ZH", "EN", "mix", "auto"], value="JP", label="Language")
btn = gr.Button("Generate Audio", variant="primary")
with gr.Column():
with gr.Accordion("Semantic Fusion", open=False):
gr.Markdown(
value="Use auxiliary text semantics to assist speech generation (language remains same as main text)\n\n"
"**Note**: Avoid using *command-style text* (e.g., 'Happy'). Use *emotionally rich text* (e.g., 'I'm so happy!!!')\n\n"
"Leave it blank to disable. \n\n"
"**If mispronunciations occur, try replacing characters and inputting the original here with weight set to 1.0 for semantic retention.**"
)
style_text = gr.Textbox(label="Auxiliary Text")
style_weight = gr.Slider(0, 1, 0.7, 0.1, label="Weight", info="Ratio between main and auxiliary BERT embeddings")
with gr.Row():
with gr.Column():
interval_between_sent = gr.Slider(0, 5, 0.2, 0.1, label="Pause between sentences (sec)")
interval_between_para = gr.Slider(0, 10, 1, 0.1, label="Pause between paragraphs (sec)")
opt_cut_by_sent = gr.Checkbox(label="Split by sentence")
slicer = gr.Button("Split and Generate", variant="primary")
with gr.Column():
output_msg = gr.Textbox(label="Output Message")
output_audio = gr.Audio(label="Output Audio")
prompt_mode.change(lambda x: gr_util(x), inputs=[prompt_mode], outputs=[text_prompt, audio_prompt])
audio_prompt.upload(lambda x: load_audio(x), inputs=[audio_prompt], outputs=[audio_prompt])
btn.click(
tts_fn,
inputs=[
input_text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language,
audio_prompt, text_prompt, prompt_mode, style_text, style_weight
],
outputs=[output_msg, output_audio],
)
slicer.click(
split_fn,
inputs=[
input_text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language,
opt_cut_by_sent, interval_between_para, interval_between_sent,
audio_prompt, text_prompt, style_text, style_weight
],
outputs=[output_msg, output_audio],
)
# --- Main entry point ---
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", default=False, help="make link public", action="store_true")
parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log")
args = parser.parse_args()
if args.debug:
logger.setLevel(logging.DEBUG)
with open("pretrained_models/info.json", "r", encoding="utf-8") as f:
models_info = json.load(f)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
models = []
for _, info in models_info.items():
if not info['enable']:
continue
name, title, repid, example, filename = info['name'], info['title'], info['repid'], info['example'], info['filename']
files = list_repo_files(repo_id=repid)
model_subfolder = None
for f in files:
if f.endswith(filename):
parts = f.split("/")
if len(parts) > 1:
model_subfolder = "/".join(parts[:-1])
break
if model_subfolder:
model_path = hf_hub_download(repo_id=repid, filename=filename, subfolder=model_subfolder)
config_path = hf_hub_download(repo_id=repid, filename="config.json", subfolder=model_subfolder)
else:
model_path = hf_hub_download(repo_id=repid, filename=filename)
config_path = hf_hub_download(repo_id=repid, filename="config.json")
hps = utils.get_hparams_from_file(config_path)
version = hps.version if hasattr(hps, "version") else "v2"
net_g = get_net_g(model_path, version, device, hps)
tts_fn = create_tts_fn(hps, net_g, device)
split_fn = create_split_fn(hps, net_g, device)
models.append((name,title, example, list(hps.data.spk2id.keys()), tts_fn, split_fn, repid))
with gr.Blocks(theme='NoCrypt/miku') as app:
gr.Markdown("## β
All models loaded successfully. Ready to use.")
with gr.Tabs():
for (name,title, example, speakers, tts_fn, split_fn, repid) in models:
create_tab(name,title, example, speakers, tts_fn, split_fn, repid)
app.queue().launch(share=args.share)
# Then patch create_tab to accept split_fn and use it in slicer.click
# And in the model loop, generate both tts_fn and split_fn then pass both into create_tab
# (Same as your current setup but now split_fn is isolated per model just like tts_fn)
|