Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,28 +7,22 @@ import argparse
|
|
7 |
import commons
|
8 |
import utils
|
9 |
import gradio as gr
|
|
|
|
|
|
|
|
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
|
12 |
-
|
13 |
from clap_wrapper import get_clap_audio_feature, get_clap_text_feature
|
14 |
from models import SynthesizerTrn
|
15 |
from text.symbols import symbols
|
16 |
from text import cleaned_text_to_sequence, get_bert
|
17 |
from text.cleaner import clean_text
|
18 |
-
import numpy as np
|
19 |
-
|
20 |
-
logging.getLogger("numba").setLevel(logging.WARNING)
|
21 |
-
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
22 |
-
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
23 |
-
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
24 |
|
25 |
logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s")
|
26 |
logger = logging.getLogger(__name__)
|
27 |
-
limitation = os.getenv("SYSTEM") == "spaces"
|
28 |
-
|
29 |
|
30 |
def get_net_g(model_path: str, version: str, device: str, hps):
|
31 |
-
# 当前版本模型 net_g
|
32 |
net_g = SynthesizerTrn(
|
33 |
len(symbols),
|
34 |
hps.data.filter_length // 2 + 1,
|
@@ -42,7 +36,6 @@ def get_net_g(model_path: str, version: str, device: str, hps):
|
|
42 |
|
43 |
def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7):
|
44 |
style_text = None if style_text == "" else style_text
|
45 |
-
# 在此处实现当前版本的get_text
|
46 |
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
47 |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
48 |
if hps.data.add_blank:
|
@@ -54,230 +47,113 @@ def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7)
|
|
54 |
word2ph[0] += 1
|
55 |
bert = get_bert(norm_text, word2ph, language_str, device, style_text, style_weight)
|
56 |
del word2ph
|
57 |
-
|
58 |
-
assert bert.shape[-1] == len(
|
59 |
-
phone
|
60 |
-
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
61 |
-
|
62 |
phone = torch.LongTensor(phone)
|
63 |
tone = torch.LongTensor(tone)
|
64 |
language = torch.LongTensor(language)
|
65 |
return bert, phone, tone, language
|
66 |
|
|
|
|
|
|
|
67 |
|
68 |
-
def
|
69 |
-
|
70 |
-
|
71 |
-
noise_scale,
|
72 |
-
noise_scale_w,
|
73 |
-
length_scale,
|
74 |
-
sid,
|
75 |
-
language,
|
76 |
-
hps,
|
77 |
-
net_g,
|
78 |
-
device,
|
79 |
-
emotion,
|
80 |
-
reference_audio=None,
|
81 |
-
skip_start=False,
|
82 |
-
skip_end=False,
|
83 |
-
style_text=None,
|
84 |
-
style_weight=0.7,
|
85 |
-
text_mode="Text",
|
86 |
-
):
|
87 |
-
# 2.2版本参数位置变了
|
88 |
-
# 2.1 参数新增 emotion reference_audio skip_start skip_end
|
89 |
-
version = hps.version if hasattr(hps, "version") else latest_version
|
90 |
-
language = "JP"
|
91 |
-
if isinstance(reference_audio, np.ndarray):
|
92 |
-
emo = get_clap_audio_feature(reference_audio, device)
|
93 |
-
else:
|
94 |
-
emo = get_clap_text_feature(emotion, device)
|
95 |
-
emo = torch.squeeze(emo, dim=1)
|
96 |
-
|
97 |
-
bert, phones, tones, lang_ids = get_text(
|
98 |
-
text,
|
99 |
-
language,
|
100 |
-
hps,
|
101 |
-
device,
|
102 |
-
style_text=style_text,
|
103 |
-
style_weight=style_weight,
|
104 |
-
)
|
105 |
-
if skip_start:
|
106 |
-
phones = phones[3:]
|
107 |
-
tones = tones[3:]
|
108 |
-
lang_ids = lang_ids[3:]
|
109 |
-
bert = bert[:, 3:]
|
110 |
-
if skip_end:
|
111 |
-
phones = phones[:-2]
|
112 |
-
tones = tones[:-2]
|
113 |
-
lang_ids = lang_ids[:-2]
|
114 |
-
bert = bert[:, :-2]
|
115 |
-
with torch.no_grad():
|
116 |
-
x_tst = phones.to(device).unsqueeze(0)
|
117 |
-
tones = tones.to(device).unsqueeze(0)
|
118 |
-
lang_ids = lang_ids.to(device).unsqueeze(0)
|
119 |
-
bert = bert.to(device).unsqueeze(0)
|
120 |
-
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
|
121 |
-
emo = emo.to(device).unsqueeze(0)
|
122 |
-
del phones
|
123 |
-
spk2id_dict = {k: v for k, v in hps.data["spk2id"].items()}
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
else:
|
133 |
-
|
134 |
-
|
135 |
-
if sid not in spk2id_dict:
|
136 |
-
raise ValueError(f"Speaker ID '{sid}' not found. Available: {list(spk2id_dict.keys())}")
|
137 |
-
|
138 |
-
speaker_id = spk2id_dict[sid]
|
139 |
-
speakers = torch.LongTensor([speaker_id]).to(device)
|
140 |
-
print(text)
|
141 |
-
audio = (
|
142 |
-
net_g.infer(
|
143 |
-
x_tst,
|
144 |
-
x_tst_lengths,
|
145 |
-
speakers,
|
146 |
-
tones,
|
147 |
-
lang_ids,
|
148 |
-
bert,
|
149 |
-
emo,
|
150 |
-
sdp_ratio=sdp_ratio,
|
151 |
-
noise_scale=noise_scale,
|
152 |
-
noise_scale_w=noise_scale_w,
|
153 |
-
length_scale=length_scale,
|
154 |
-
)[0][0, 0]
|
155 |
-
.data.cpu()
|
156 |
-
.float()
|
157 |
-
.numpy()
|
158 |
-
)
|
159 |
-
del (
|
160 |
-
x_tst,
|
161 |
-
tones,
|
162 |
-
lang_ids,
|
163 |
-
bert,
|
164 |
-
x_tst_lengths,
|
165 |
-
speakers,
|
166 |
-
emo,
|
167 |
-
) # , emo
|
168 |
-
if torch.cuda.is_available():
|
169 |
-
torch.cuda.empty_cache()
|
170 |
-
return audio
|
171 |
-
|
172 |
|
173 |
-
def create_tts_fn(net_g_ms, hps):
|
174 |
-
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,language,
|
175 |
-
reference_audio,
|
176 |
-
emotion,
|
177 |
-
prompt_mode,
|
178 |
-
style_text=None,
|
179 |
-
style_weight=0):
|
180 |
-
print(f"{text} | {speaker}")
|
181 |
-
sid = hps.data.spk2id[speaker]
|
182 |
-
text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
|
183 |
-
if limitation:
|
184 |
-
max_len = 100
|
185 |
-
if len(text) > max_len:
|
186 |
-
return "Error: Text is too long", None
|
187 |
audio = infer(
|
188 |
text=text,
|
|
|
|
|
189 |
sdp_ratio=sdp_ratio,
|
190 |
noise_scale=noise_scale,
|
191 |
noise_scale_w=noise_scale_w,
|
192 |
length_scale=length_scale,
|
193 |
-
sid=
|
194 |
-
language=
|
195 |
hps=hps,
|
196 |
-
net_g=
|
197 |
device=device,
|
198 |
-
|
199 |
-
|
200 |
-
skip_start=False,
|
201 |
-
skip_end=False,
|
202 |
-
style_text=None,
|
203 |
-
style_weight=0.7,
|
204 |
-
text_mode="Text"
|
205 |
)
|
206 |
return "Success", (hps.data.sampling_rate, audio)
|
207 |
return tts_fn
|
208 |
|
209 |
-
|
210 |
if __name__ == "__main__":
|
211 |
-
device = (
|
212 |
-
"cuda:0"
|
213 |
-
if torch.cuda.is_available()
|
214 |
-
else (
|
215 |
-
"mps"
|
216 |
-
if sys.platform == "darwin" and torch.backends.mps.is_available()
|
217 |
-
else "cpu"
|
218 |
-
)
|
219 |
-
)
|
220 |
-
|
221 |
parser = argparse.ArgumentParser()
|
222 |
parser.add_argument("--share", default=False, help="make link public", action="store_true")
|
223 |
parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log")
|
224 |
args = parser.parse_args()
|
225 |
-
if args.debug:
|
226 |
-
logger.info("Enable DEBUG-LEVEL log")
|
227 |
-
logging.basicConfig(level=logging.DEBUG)
|
228 |
|
229 |
-
|
|
|
230 |
|
231 |
with open("pretrained_models/info.json", "r", encoding="utf-8") as f:
|
232 |
models_info = json.load(f)
|
233 |
|
234 |
-
|
235 |
-
|
|
|
236 |
if not info['enable']:
|
237 |
continue
|
238 |
-
name = info['name']
|
239 |
-
title = info['title']
|
240 |
-
link = info['link']
|
241 |
-
example = info['example']
|
242 |
-
|
243 |
-
print(f"🔄 Loading model: {name} from {link}")
|
244 |
config_path = hf_hub_download(repo_id=link, filename="config.json")
|
245 |
model_path = hf_hub_download(repo_id=link, filename=f"{name}.pth")
|
246 |
hps = utils.get_hparams_from_file(config_path)
|
247 |
-
version = hps.version if hasattr(hps, "version") else
|
248 |
-
|
249 |
-
|
|
|
250 |
|
251 |
-
# ✅ Gradio UI แบบพร้อมใช้กับ Spaces
|
252 |
with gr.Blocks(theme='NoCrypt/miku') as app:
|
253 |
gr.Markdown("## ✅ All models loaded successfully. Ready to use.")
|
254 |
-
|
255 |
with gr.Tabs():
|
256 |
-
for (
|
257 |
-
with gr.TabItem(
|
258 |
-
with gr.Row():
|
259 |
-
gr.Markdown(
|
260 |
-
'<div align="center">'
|
261 |
-
f'<a><strong>{title}</strong></a>'
|
262 |
-
f'</div>'
|
263 |
-
)
|
264 |
with gr.Row():
|
265 |
with gr.Column():
|
266 |
-
input_text = gr.Textbox(label="
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
|
|
278 |
with gr.Column():
|
279 |
-
|
280 |
-
|
281 |
-
|
|
|
|
|
|
|
282 |
|
283 |
app.queue().launch(share=args.share)
|
|
|
7 |
import commons
|
8 |
import utils
|
9 |
import gradio as gr
|
10 |
+
import numpy as np
|
11 |
+
import librosa
|
12 |
+
import re_matching
|
13 |
+
from tools.sentence import split_by_language
|
14 |
from huggingface_hub import hf_hub_download
|
15 |
|
|
|
16 |
from clap_wrapper import get_clap_audio_feature, get_clap_text_feature
|
17 |
from models import SynthesizerTrn
|
18 |
from text.symbols import symbols
|
19 |
from text import cleaned_text_to_sequence, get_bert
|
20 |
from text.cleaner import clean_text
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s")
|
23 |
logger = logging.getLogger(__name__)
|
|
|
|
|
24 |
|
25 |
def get_net_g(model_path: str, version: str, device: str, hps):
|
|
|
26 |
net_g = SynthesizerTrn(
|
27 |
len(symbols),
|
28 |
hps.data.filter_length // 2 + 1,
|
|
|
36 |
|
37 |
def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7):
|
38 |
style_text = None if style_text == "" else style_text
|
|
|
39 |
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
40 |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
41 |
if hps.data.add_blank:
|
|
|
47 |
word2ph[0] += 1
|
48 |
bert = get_bert(norm_text, word2ph, language_str, device, style_text, style_weight)
|
49 |
del word2ph
|
50 |
+
assert bert.shape[-1] == len(phone)
|
|
|
|
|
|
|
|
|
51 |
phone = torch.LongTensor(phone)
|
52 |
tone = torch.LongTensor(tone)
|
53 |
language = torch.LongTensor(language)
|
54 |
return bert, phone, tone, language
|
55 |
|
56 |
+
def infer(*args, **kwargs):
|
57 |
+
from infer import infer as real_infer
|
58 |
+
return real_infer(*args, **kwargs)
|
59 |
|
60 |
+
def load_audio(path):
|
61 |
+
audio, sr = librosa.load(path, 48000)
|
62 |
+
return sr, audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
def gr_util(item):
|
65 |
+
if item == "Text prompt":
|
66 |
+
return {"visible": True, "__type__": "update"}, {"visible": False, "__type__": "update"}
|
67 |
+
else:
|
68 |
+
return {"visible": False, "__type__": "update"}, {"visible": True, "__type__": "update"}
|
69 |
+
|
70 |
+
def create_tts_fn(hps, net_g, device):
|
71 |
+
def tts_fn(
|
72 |
+
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language,
|
73 |
+
reference_audio, emotion, prompt_mode, style_text, style_weight
|
74 |
+
):
|
75 |
+
if style_text == "":
|
76 |
+
style_text = None
|
77 |
+
if prompt_mode == "Audio prompt":
|
78 |
+
if reference_audio is None:
|
79 |
+
return ("Invalid audio prompt", None)
|
80 |
+
else:
|
81 |
+
reference_audio = load_audio(reference_audio)[1]
|
82 |
else:
|
83 |
+
reference_audio = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
audio = infer(
|
86 |
text=text,
|
87 |
+
reference_audio=reference_audio,
|
88 |
+
emotion=emotion,
|
89 |
sdp_ratio=sdp_ratio,
|
90 |
noise_scale=noise_scale,
|
91 |
noise_scale_w=noise_scale_w,
|
92 |
length_scale=length_scale,
|
93 |
+
sid=speaker,
|
94 |
+
language=language,
|
95 |
hps=hps,
|
96 |
+
net_g=net_g,
|
97 |
device=device,
|
98 |
+
style_text=style_text,
|
99 |
+
style_weight=style_weight,
|
|
|
|
|
|
|
|
|
|
|
100 |
)
|
101 |
return "Success", (hps.data.sampling_rate, audio)
|
102 |
return tts_fn
|
103 |
|
|
|
104 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
parser = argparse.ArgumentParser()
|
106 |
parser.add_argument("--share", default=False, help="make link public", action="store_true")
|
107 |
parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log")
|
108 |
args = parser.parse_args()
|
|
|
|
|
|
|
109 |
|
110 |
+
if args.debug:
|
111 |
+
logger.setLevel(logging.DEBUG)
|
112 |
|
113 |
with open("pretrained_models/info.json", "r", encoding="utf-8") as f:
|
114 |
models_info = json.load(f)
|
115 |
|
116 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
117 |
+
models = []
|
118 |
+
for _, info in models_info.items():
|
119 |
if not info['enable']:
|
120 |
continue
|
121 |
+
name, title, link, example = info['name'], info['title'], info['link'], info['example']
|
|
|
|
|
|
|
|
|
|
|
122 |
config_path = hf_hub_download(repo_id=link, filename="config.json")
|
123 |
model_path = hf_hub_download(repo_id=link, filename=f"{name}.pth")
|
124 |
hps = utils.get_hparams_from_file(config_path)
|
125 |
+
version = hps.version if hasattr(hps, "version") else "v2"
|
126 |
+
net_g = get_net_g(model_path, version, device, hps)
|
127 |
+
fn = create_tts_fn(hps, net_g, device)
|
128 |
+
models.append((title, example, list(hps.data.spk2id.keys()), fn))
|
129 |
|
|
|
130 |
with gr.Blocks(theme='NoCrypt/miku') as app:
|
131 |
gr.Markdown("## ✅ All models loaded successfully. Ready to use.")
|
|
|
132 |
with gr.Tabs():
|
133 |
+
for (title, example, speakers, tts_fn) in models:
|
134 |
+
with gr.TabItem(title):
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
with gr.Row():
|
136 |
with gr.Column():
|
137 |
+
input_text = gr.Textbox(label="Input text", lines=5, value=example)
|
138 |
+
speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="Speaker")
|
139 |
+
prompt_mode = gr.Radio(["Text prompt", "Audio prompt"], label="Prompt Mode", value="Text prompt")
|
140 |
+
text_prompt = gr.Textbox(label="Text prompt", value="Happy", visible=True)
|
141 |
+
audio_prompt = gr.Audio(label="Audio prompt", type="filepath", visible=False)
|
142 |
+
sdp_ratio = gr.Slider(0, 1, 0.2, 0.1, label="SDP Ratio")
|
143 |
+
noise_scale = gr.Slider(0.1, 2.0, 0.6, 0.1, label="Noise")
|
144 |
+
noise_scale_w = gr.Slider(0.1, 2.0, 0.8, 0.1, label="Noise_W")
|
145 |
+
length_scale = gr.Slider(0.1, 2.0, 1.0, 0.1, label="Length")
|
146 |
+
language = gr.Dropdown(choices=["JP", "ZH", "EN", "mix", "auto"], value="JP", label="Language")
|
147 |
+
style_text = gr.Textbox(label="Style Text", placeholder="辅助文本 (留空为无)")
|
148 |
+
style_weight = gr.Slider(0, 1, 0.7, 0.1, label="Style Weight")
|
149 |
+
btn = gr.Button("Generate Audio", variant="primary")
|
150 |
+
|
151 |
with gr.Column():
|
152 |
+
output_msg = gr.Textbox(label="Output Message")
|
153 |
+
output_audio = gr.Audio(label="Output Audio")
|
154 |
+
|
155 |
+
prompt_mode.change(lambda x: gr_util(x), inputs=[prompt_mode], outputs=[text_prompt, audio_prompt])
|
156 |
+
audio_prompt.upload(lambda x: load_audio(x), inputs=[audio_prompt], outputs=[audio_prompt])
|
157 |
+
btn.click(tts_fn, inputs=[input_text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language, audio_prompt, text_prompt, prompt_mode, style_text, style_weight], outputs=[output_msg, output_audio])
|
158 |
|
159 |
app.queue().launch(share=args.share)
|