NMEX commited on
Commit
760e479
·
1 Parent(s): bbe2c5f
.gitignore ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
161
+
162
+ .DS_Store
163
+ /models
164
+
165
+ filelists/*
166
+ !/filelists/esd.list
167
+ data/*
168
+ /infer_save
169
+
170
+ .idea
171
+
172
+ /pretrained_models/shorekeeper"
173
+ /pretrained_models/shorekeeper
LICENSE ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU AFFERO GENERAL PUBLIC LICENSE
2
+ Version 3, 19 November 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU Affero General Public License is a free, copyleft license for
11
+ software and other kinds of works, specifically designed to ensure
12
+ cooperation with the community in the case of network server software.
13
+
14
+ The licenses for most software and other practical works are designed
15
+ to take away your freedom to share and change the works. By contrast,
16
+ our General Public Licenses are intended to guarantee your freedom to
17
+ share and change all versions of a program--to make sure it remains free
18
+ software for all its users.
19
+
20
+ When we speak of free software, we are referring to freedom, not
21
+ price. Our General Public Licenses are designed to make sure that you
22
+ have the freedom to distribute copies of free software (and charge for
23
+ them if you wish), that you receive source code or can get it if you
24
+ want it, that you can change the software or use pieces of it in new
25
+ free programs, and that you know you can do these things.
26
+
27
+ Developers that use our General Public Licenses protect your rights
28
+ with two steps: (1) assert copyright on the software, and (2) offer
29
+ you this License which gives you legal permission to copy, distribute
30
+ and/or modify the software.
31
+
32
+ A secondary benefit of defending all users' freedom is that
33
+ improvements made in alternate versions of the program, if they
34
+ receive widespread use, become available for other developers to
35
+ incorporate. Many developers of free software are heartened and
36
+ encouraged by the resulting cooperation. However, in the case of
37
+ software used on network servers, this result may fail to come about.
38
+ The GNU General Public License permits making a modified version and
39
+ letting the public access it on a server without ever releasing its
40
+ source code to the public.
41
+
42
+ The GNU Affero General Public License is designed specifically to
43
+ ensure that, in such cases, the modified source code becomes available
44
+ to the community. It requires the operator of a network server to
45
+ provide the source code of the modified version running there to the
46
+ users of that server. Therefore, public use of a modified version, on
47
+ a publicly accessible server, gives the public access to the source
48
+ code of the modified version.
49
+
50
+ An older license, called the Affero General Public License and
51
+ published by Affero, was designed to accomplish similar goals. This is
52
+ a different license, not a version of the Affero GPL, but Affero has
53
+ released a new version of the Affero GPL which permits relicensing under
54
+ this license.
55
+
56
+ The precise terms and conditions for copying, distribution and
57
+ modification follow.
58
+
59
+ TERMS AND CONDITIONS
60
+
61
+ 0. Definitions.
62
+
63
+ "This License" refers to version 3 of the GNU Affero General Public License.
64
+
65
+ "Copyright" also means copyright-like laws that apply to other kinds of
66
+ works, such as semiconductor masks.
67
+
68
+ "The Program" refers to any copyrightable work licensed under this
69
+ License. Each licensee is addressed as "you". "Licensees" and
70
+ "recipients" may be individuals or organizations.
71
+
72
+ To "modify" a work means to copy from or adapt all or part of the work
73
+ in a fashion requiring copyright permission, other than the making of an
74
+ exact copy. The resulting work is called a "modified version" of the
75
+ earlier work or a work "based on" the earlier work.
76
+
77
+ A "covered work" means either the unmodified Program or a work based
78
+ on the Program.
79
+
80
+ To "propagate" a work means to do anything with it that, without
81
+ permission, would make you directly or secondarily liable for
82
+ infringement under applicable copyright law, except executing it on a
83
+ computer or modifying a private copy. Propagation includes copying,
84
+ distribution (with or without modification), making available to the
85
+ public, and in some countries other activities as well.
86
+
87
+ To "convey" a work means any kind of propagation that enables other
88
+ parties to make or receive copies. Mere interaction with a user through
89
+ a computer network, with no transfer of a copy, is not conveying.
90
+
91
+ An interactive user interface displays "Appropriate Legal Notices"
92
+ to the extent that it includes a convenient and prominently visible
93
+ feature that (1) displays an appropriate copyright notice, and (2)
94
+ tells the user that there is no warranty for the work (except to the
95
+ extent that warranties are provided), that licensees may convey the
96
+ work under this License, and how to view a copy of this License. If
97
+ the interface presents a list of user commands or options, such as a
98
+ menu, a prominent item in the list meets this criterion.
99
+
100
+ 1. Source Code.
101
+
102
+ The "source code" for a work means the preferred form of the work
103
+ for making modifications to it. "Object code" means any non-source
104
+ form of a work.
105
+
106
+ A "Standard Interface" means an interface that either is an official
107
+ standard defined by a recognized standards body, or, in the case of
108
+ interfaces specified for a particular programming language, one that
109
+ is widely used among developers working in that language.
110
+
111
+ The "System Libraries" of an executable work include anything, other
112
+ than the work as a whole, that (a) is included in the normal form of
113
+ packaging a Major Component, but which is not part of that Major
114
+ Component, and (b) serves only to enable use of the work with that
115
+ Major Component, or to implement a Standard Interface for which an
116
+ implementation is available to the public in source code form. A
117
+ "Major Component", in this context, means a major essential component
118
+ (kernel, window system, and so on) of the specific operating system
119
+ (if any) on which the executable work runs, or a compiler used to
120
+ produce the work, or an object code interpreter used to run it.
121
+
122
+ The "Corresponding Source" for a work in object code form means all
123
+ the source code needed to generate, install, and (for an executable
124
+ work) run the object code and to modify the work, including scripts to
125
+ control those activities. However, it does not include the work's
126
+ System Libraries, or general-purpose tools or generally available free
127
+ programs which are used unmodified in performing those activities but
128
+ which are not part of the work. For example, Corresponding Source
129
+ includes interface definition files associated with source files for
130
+ the work, and the source code for shared libraries and dynamically
131
+ linked subprograms that the work is specifically designed to require,
132
+ such as by intimate data communication or control flow between those
133
+ subprograms and other parts of the work.
134
+
135
+ The Corresponding Source need not include anything that users
136
+ can regenerate automatically from other parts of the Corresponding
137
+ Source.
138
+
139
+ The Corresponding Source for a work in source code form is that
140
+ same work.
141
+
142
+ 2. Basic Permissions.
143
+
144
+ All rights granted under this License are granted for the term of
145
+ copyright on the Program, and are irrevocable provided the stated
146
+ conditions are met. This License explicitly affirms your unlimited
147
+ permission to run the unmodified Program. The output from running a
148
+ covered work is covered by this License only if the output, given its
149
+ content, constitutes a covered work. This License acknowledges your
150
+ rights of fair use or other equivalent, as provided by copyright law.
151
+
152
+ You may make, run and propagate covered works that you do not
153
+ convey, without conditions so long as your license otherwise remains
154
+ in force. You may convey covered works to others for the sole purpose
155
+ of having them make modifications exclusively for you, or provide you
156
+ with facilities for running those works, provided that you comply with
157
+ the terms of this License in conveying all material for which you do
158
+ not control copyright. Those thus making or running the covered works
159
+ for you must do so exclusively on your behalf, under your direction
160
+ and control, on terms that prohibit them from making any copies of
161
+ your copyrighted material outside their relationship with you.
162
+
163
+ Conveying under any other circumstances is permitted solely under
164
+ the conditions stated below. Sublicensing is not allowed; section 10
165
+ makes it unnecessary.
166
+
167
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168
+
169
+ No covered work shall be deemed part of an effective technological
170
+ measure under any applicable law fulfilling obligations under article
171
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172
+ similar laws prohibiting or restricting circumvention of such
173
+ measures.
174
+
175
+ When you convey a covered work, you waive any legal power to forbid
176
+ circumvention of technological measures to the extent such circumvention
177
+ is effected by exercising rights under this License with respect to
178
+ the covered work, and you disclaim any intention to limit operation or
179
+ modification of the work as a means of enforcing, against the work's
180
+ users, your or third parties' legal rights to forbid circumvention of
181
+ technological measures.
182
+
183
+ 4. Conveying Verbatim Copies.
184
+
185
+ You may convey verbatim copies of the Program's source code as you
186
+ receive it, in any medium, provided that you conspicuously and
187
+ appropriately publish on each copy an appropriate copyright notice;
188
+ keep intact all notices stating that this License and any
189
+ non-permissive terms added in accord with section 7 apply to the code;
190
+ keep intact all notices of the absence of any warranty; and give all
191
+ recipients a copy of this License along with the Program.
192
+
193
+ You may charge any price or no price for each copy that you convey,
194
+ and you may offer support or warranty protection for a fee.
195
+
196
+ 5. Conveying Modified Source Versions.
197
+
198
+ You may convey a work based on the Program, or the modifications to
199
+ produce it from the Program, in the form of source code under the
200
+ terms of section 4, provided that you also meet all of these conditions:
201
+
202
+ a) The work must carry prominent notices stating that you modified
203
+ it, and giving a relevant date.
204
+
205
+ b) The work must carry prominent notices stating that it is
206
+ released under this License and any conditions added under section
207
+ 7. This requirement modifies the requirement in section 4 to
208
+ "keep intact all notices".
209
+
210
+ c) You must license the entire work, as a whole, under this
211
+ License to anyone who comes into possession of a copy. This
212
+ License will therefore apply, along with any applicable section 7
213
+ additional terms, to the whole of the work, and all its parts,
214
+ regardless of how they are packaged. This License gives no
215
+ permission to license the work in any other way, but it does not
216
+ invalidate such permission if you have separately received it.
217
+
218
+ d) If the work has interactive user interfaces, each must display
219
+ Appropriate Legal Notices; however, if the Program has interactive
220
+ interfaces that do not display Appropriate Legal Notices, your
221
+ work need not make them do so.
222
+
223
+ A compilation of a covered work with other separate and independent
224
+ works, which are not by their nature extensions of the covered work,
225
+ and which are not combined with it such as to form a larger program,
226
+ in or on a volume of a storage or distribution medium, is called an
227
+ "aggregate" if the compilation and its resulting copyright are not
228
+ used to limit the access or legal rights of the compilation's users
229
+ beyond what the individual works permit. Inclusion of a covered work
230
+ in an aggregate does not cause this License to apply to the other
231
+ parts of the aggregate.
232
+
233
+ 6. Conveying Non-Source Forms.
234
+
235
+ You may convey a covered work in object code form under the terms
236
+ of sections 4 and 5, provided that you also convey the
237
+ machine-readable Corresponding Source under the terms of this License,
238
+ in one of these ways:
239
+
240
+ a) Convey the object code in, or embodied in, a physical product
241
+ (including a physical distribution medium), accompanied by the
242
+ Corresponding Source fixed on a durable physical medium
243
+ customarily used for software interchange.
244
+
245
+ b) Convey the object code in, or embodied in, a physical product
246
+ (including a physical distribution medium), accompanied by a
247
+ written offer, valid for at least three years and valid for as
248
+ long as you offer spare parts or customer support for that product
249
+ model, to give anyone who possesses the object code either (1) a
250
+ copy of the Corresponding Source for all the software in the
251
+ product that is covered by this License, on a durable physical
252
+ medium customarily used for software interchange, for a price no
253
+ more than your reasonable cost of physically performing this
254
+ conveying of source, or (2) access to copy the
255
+ Corresponding Source from a network server at no charge.
256
+
257
+ c) Convey individual copies of the object code with a copy of the
258
+ written offer to provide the Corresponding Source. This
259
+ alternative is allowed only occasionally and noncommercially, and
260
+ only if you received the object code with such an offer, in accord
261
+ with subsection 6b.
262
+
263
+ d) Convey the object code by offering access from a designated
264
+ place (gratis or for a charge), and offer equivalent access to the
265
+ Corresponding Source in the same way through the same place at no
266
+ further charge. You need not require recipients to copy the
267
+ Corresponding Source along with the object code. If the place to
268
+ copy the object code is a network server, the Corresponding Source
269
+ may be on a different server (operated by you or a third party)
270
+ that supports equivalent copying facilities, provided you maintain
271
+ clear directions next to the object code saying where to find the
272
+ Corresponding Source. Regardless of what server hosts the
273
+ Corresponding Source, you remain obligated to ensure that it is
274
+ available for as long as needed to satisfy these requirements.
275
+
276
+ e) Convey the object code using peer-to-peer transmission, provided
277
+ you inform other peers where the object code and Corresponding
278
+ Source of the work are being offered to the general public at no
279
+ charge under subsection 6d.
280
+
281
+ A separable portion of the object code, whose source code is excluded
282
+ from the Corresponding Source as a System Library, need not be
283
+ included in conveying the object code work.
284
+
285
+ A "User Product" is either (1) a "consumer product", which means any
286
+ tangible personal property which is normally used for personal, family,
287
+ or household purposes, or (2) anything designed or sold for incorporation
288
+ into a dwelling. In determining whether a product is a consumer product,
289
+ doubtful cases shall be resolved in favor of coverage. For a particular
290
+ product received by a particular user, "normally used" refers to a
291
+ typical or common use of that class of product, regardless of the status
292
+ of the particular user or of the way in which the particular user
293
+ actually uses, or expects or is expected to use, the product. A product
294
+ is a consumer product regardless of whether the product has substantial
295
+ commercial, industrial or non-consumer uses, unless such uses represent
296
+ the only significant mode of use of the product.
297
+
298
+ "Installation Information" for a User Product means any methods,
299
+ procedures, authorization keys, or other information required to install
300
+ and execute modified versions of a covered work in that User Product from
301
+ a modified version of its Corresponding Source. The information must
302
+ suffice to ensure that the continued functioning of the modified object
303
+ code is in no case prevented or interfered with solely because
304
+ modification has been made.
305
+
306
+ If you convey an object code work under this section in, or with, or
307
+ specifically for use in, a User Product, and the conveying occurs as
308
+ part of a transaction in which the right of possession and use of the
309
+ User Product is transferred to the recipient in perpetuity or for a
310
+ fixed term (regardless of how the transaction is characterized), the
311
+ Corresponding Source conveyed under this section must be accompanied
312
+ by the Installation Information. But this requirement does not apply
313
+ if neither you nor any third party retains the ability to install
314
+ modified object code on the User Product (for example, the work has
315
+ been installed in ROM).
316
+
317
+ The requirement to provide Installation Information does not include a
318
+ requirement to continue to provide support service, warranty, or updates
319
+ for a work that has been modified or installed by the recipient, or for
320
+ the User Product in which it has been modified or installed. Access to a
321
+ network may be denied when the modification itself materially and
322
+ adversely affects the operation of the network or violates the rules and
323
+ protocols for communication across the network.
324
+
325
+ Corresponding Source conveyed, and Installation Information provided,
326
+ in accord with this section must be in a format that is publicly
327
+ documented (and with an implementation available to the public in
328
+ source code form), and must require no special password or key for
329
+ unpacking, reading or copying.
330
+
331
+ 7. Additional Terms.
332
+
333
+ "Additional permissions" are terms that supplement the terms of this
334
+ License by making exceptions from one or more of its conditions.
335
+ Additional permissions that are applicable to the entire Program shall
336
+ be treated as though they were included in this License, to the extent
337
+ that they are valid under applicable law. If additional permissions
338
+ apply only to part of the Program, that part may be used separately
339
+ under those permissions, but the entire Program remains governed by
340
+ this License without regard to the additional permissions.
341
+
342
+ When you convey a copy of a covered work, you may at your option
343
+ remove any additional permissions from that copy, or from any part of
344
+ it. (Additional permissions may be written to require their own
345
+ removal in certain cases when you modify the work.) You may place
346
+ additional permissions on material, added by you to a covered work,
347
+ for which you have or can give appropriate copyright permission.
348
+
349
+ Notwithstanding any other provision of this License, for material you
350
+ add to a covered work, you may (if authorized by the copyright holders of
351
+ that material) supplement the terms of this License with terms:
352
+
353
+ a) Disclaiming warranty or limiting liability differently from the
354
+ terms of sections 15 and 16 of this License; or
355
+
356
+ b) Requiring preservation of specified reasonable legal notices or
357
+ author attributions in that material or in the Appropriate Legal
358
+ Notices displayed by works containing it; or
359
+
360
+ c) Prohibiting misrepresentation of the origin of that material, or
361
+ requiring that modified versions of such material be marked in
362
+ reasonable ways as different from the original version; or
363
+
364
+ d) Limiting the use for publicity purposes of names of licensors or
365
+ authors of the material; or
366
+
367
+ e) Declining to grant rights under trademark law for use of some
368
+ trade names, trademarks, or service marks; or
369
+
370
+ f) Requiring indemnification of licensors and authors of that
371
+ material by anyone who conveys the material (or modified versions of
372
+ it) with contractual assumptions of liability to the recipient, for
373
+ any liability that these contractual assumptions directly impose on
374
+ those licensors and authors.
375
+
376
+ All other non-permissive additional terms are considered "further
377
+ restrictions" within the meaning of section 10. If the Program as you
378
+ received it, or any part of it, contains a notice stating that it is
379
+ governed by this License along with a term that is a further
380
+ restriction, you may remove that term. If a license document contains
381
+ a further restriction but permits relicensing or conveying under this
382
+ License, you may add to a covered work material governed by the terms
383
+ of that license document, provided that the further restriction does
384
+ not survive such relicensing or conveying.
385
+
386
+ If you add terms to a covered work in accord with this section, you
387
+ must place, in the relevant source files, a statement of the
388
+ additional terms that apply to those files, or a notice indicating
389
+ where to find the applicable terms.
390
+
391
+ Additional terms, permissive or non-permissive, may be stated in the
392
+ form of a separately written license, or stated as exceptions;
393
+ the above requirements apply either way.
394
+
395
+ 8. Termination.
396
+
397
+ You may not propagate or modify a covered work except as expressly
398
+ provided under this License. Any attempt otherwise to propagate or
399
+ modify it is void, and will automatically terminate your rights under
400
+ this License (including any patent licenses granted under the third
401
+ paragraph of section 11).
402
+
403
+ However, if you cease all violation of this License, then your
404
+ license from a particular copyright holder is reinstated (a)
405
+ provisionally, unless and until the copyright holder explicitly and
406
+ finally terminates your license, and (b) permanently, if the copyright
407
+ holder fails to notify you of the violation by some reasonable means
408
+ prior to 60 days after the cessation.
409
+
410
+ Moreover, your license from a particular copyright holder is
411
+ reinstated permanently if the copyright holder notifies you of the
412
+ violation by some reasonable means, this is the first time you have
413
+ received notice of violation of this License (for any work) from that
414
+ copyright holder, and you cure the violation prior to 30 days after
415
+ your receipt of the notice.
416
+
417
+ Termination of your rights under this section does not terminate the
418
+ licenses of parties who have received copies or rights from you under
419
+ this License. If your rights have been terminated and not permanently
420
+ reinstated, you do not qualify to receive new licenses for the same
421
+ material under section 10.
422
+
423
+ 9. Acceptance Not Required for Having Copies.
424
+
425
+ You are not required to accept this License in order to receive or
426
+ run a copy of the Program. Ancillary propagation of a covered work
427
+ occurring solely as a consequence of using peer-to-peer transmission
428
+ to receive a copy likewise does not require acceptance. However,
429
+ nothing other than this License grants you permission to propagate or
430
+ modify any covered work. These actions infringe copyright if you do
431
+ not accept this License. Therefore, by modifying or propagating a
432
+ covered work, you indicate your acceptance of this License to do so.
433
+
434
+ 10. Automatic Licensing of Downstream Recipients.
435
+
436
+ Each time you convey a covered work, the recipient automatically
437
+ receives a license from the original licensors, to run, modify and
438
+ propagate that work, subject to this License. You are not responsible
439
+ for enforcing compliance by third parties with this License.
440
+
441
+ An "entity transaction" is a transaction transferring control of an
442
+ organization, or substantially all assets of one, or subdividing an
443
+ organization, or merging organizations. If propagation of a covered
444
+ work results from an entity transaction, each party to that
445
+ transaction who receives a copy of the work also receives whatever
446
+ licenses to the work the party's predecessor in interest had or could
447
+ give under the previous paragraph, plus a right to possession of the
448
+ Corresponding Source of the work from the predecessor in interest, if
449
+ the predecessor has it or can get it with reasonable efforts.
450
+
451
+ You may not impose any further restrictions on the exercise of the
452
+ rights granted or affirmed under this License. For example, you may
453
+ not impose a license fee, royalty, or other charge for exercise of
454
+ rights granted under this License, and you may not initiate litigation
455
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
456
+ any patent claim is infringed by making, using, selling, offering for
457
+ sale, or importing the Program or any portion of it.
458
+
459
+ 11. Patents.
460
+
461
+ A "contributor" is a copyright holder who authorizes use under this
462
+ License of the Program or a work on which the Program is based. The
463
+ work thus licensed is called the contributor's "contributor version".
464
+
465
+ A contributor's "essential patent claims" are all patent claims
466
+ owned or controlled by the contributor, whether already acquired or
467
+ hereafter acquired, that would be infringed by some manner, permitted
468
+ by this License, of making, using, or selling its contributor version,
469
+ but do not include claims that would be infringed only as a
470
+ consequence of further modification of the contributor version. For
471
+ purposes of this definition, "control" includes the right to grant
472
+ patent sublicenses in a manner consistent with the requirements of
473
+ this License.
474
+
475
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
476
+ patent license under the contributor's essential patent claims, to
477
+ make, use, sell, offer for sale, import and otherwise run, modify and
478
+ propagate the contents of its contributor version.
479
+
480
+ In the following three paragraphs, a "patent license" is any express
481
+ agreement or commitment, however denominated, not to enforce a patent
482
+ (such as an express permission to practice a patent or covenant not to
483
+ sue for patent infringement). To "grant" such a patent license to a
484
+ party means to make such an agreement or commitment not to enforce a
485
+ patent against the party.
486
+
487
+ If you convey a covered work, knowingly relying on a patent license,
488
+ and the Corresponding Source of the work is not available for anyone
489
+ to copy, free of charge and under the terms of this License, through a
490
+ publicly available network server or other readily accessible means,
491
+ then you must either (1) cause the Corresponding Source to be so
492
+ available, or (2) arrange to deprive yourself of the benefit of the
493
+ patent license for this particular work, or (3) arrange, in a manner
494
+ consistent with the requirements of this License, to extend the patent
495
+ license to downstream recipients. "Knowingly relying" means you have
496
+ actual knowledge that, but for the patent license, your conveying the
497
+ covered work in a country, or your recipient's use of the covered work
498
+ in a country, would infringe one or more identifiable patents in that
499
+ country that you have reason to believe are valid.
500
+
501
+ If, pursuant to or in connection with a single transaction or
502
+ arrangement, you convey, or propagate by procuring conveyance of, a
503
+ covered work, and grant a patent license to some of the parties
504
+ receiving the covered work authorizing them to use, propagate, modify
505
+ or convey a specific copy of the covered work, then the patent license
506
+ you grant is automatically extended to all recipients of the covered
507
+ work and works based on it.
508
+
509
+ A patent license is "discriminatory" if it does not include within
510
+ the scope of its coverage, prohibits the exercise of, or is
511
+ conditioned on the non-exercise of one or more of the rights that are
512
+ specifically granted under this License. You may not convey a covered
513
+ work if you are a party to an arrangement with a third party that is
514
+ in the business of distributing software, under which you make payment
515
+ to the third party based on the extent of your activity of conveying
516
+ the work, and under which the third party grants, to any of the
517
+ parties who would receive the covered work from you, a discriminatory
518
+ patent license (a) in connection with copies of the covered work
519
+ conveyed by you (or copies made from those copies), or (b) primarily
520
+ for and in connection with specific products or compilations that
521
+ contain the covered work, unless you entered into that arrangement,
522
+ or that patent license was granted, prior to 28 March 2007.
523
+
524
+ Nothing in this License shall be construed as excluding or limiting
525
+ any implied license or other defenses to infringement that may
526
+ otherwise be available to you under applicable patent law.
527
+
528
+ 12. No Surrender of Others' Freedom.
529
+
530
+ If conditions are imposed on you (whether by court order, agreement or
531
+ otherwise) that contradict the conditions of this License, they do not
532
+ excuse you from the conditions of this License. If you cannot convey a
533
+ covered work so as to satisfy simultaneously your obligations under this
534
+ License and any other pertinent obligations, then as a consequence you may
535
+ not convey it at all. For example, if you agree to terms that obligate you
536
+ to collect a royalty for further conveying from those to whom you convey
537
+ the Program, the only way you could satisfy both those terms and this
538
+ License would be to refrain entirely from conveying the Program.
539
+
540
+ 13. Remote Network Interaction; Use with the GNU General Public License.
541
+
542
+ Notwithstanding any other provision of this License, if you modify the
543
+ Program, your modified version must prominently offer all users
544
+ interacting with it remotely through a computer network (if your version
545
+ supports such interaction) an opportunity to receive the Corresponding
546
+ Source of your version by providing access to the Corresponding Source
547
+ from a network server at no charge, through some standard or customary
548
+ means of facilitating copying of software. This Corresponding Source
549
+ shall include the Corresponding Source for any work covered by version 3
550
+ of the GNU General Public License that is incorporated pursuant to the
551
+ following paragraph.
552
+
553
+ Notwithstanding any other provision of this License, you have
554
+ permission to link or combine any covered work with a work licensed
555
+ under version 3 of the GNU General Public License into a single
556
+ combined work, and to convey the resulting work. The terms of this
557
+ License will continue to apply to the part which is the covered work,
558
+ but the work with which it is combined will remain governed by version
559
+ 3 of the GNU General Public License.
560
+
561
+ 14. Revised Versions of this License.
562
+
563
+ The Free Software Foundation may publish revised and/or new versions of
564
+ the GNU Affero General Public License from time to time. Such new versions
565
+ will be similar in spirit to the present version, but may differ in detail to
566
+ address new problems or concerns.
567
+
568
+ Each version is given a distinguishing version number. If the
569
+ Program specifies that a certain numbered version of the GNU Affero General
570
+ Public License "or any later version" applies to it, you have the
571
+ option of following the terms and conditions either of that numbered
572
+ version or of any later version published by the Free Software
573
+ Foundation. If the Program does not specify a version number of the
574
+ GNU Affero General Public License, you may choose any version ever published
575
+ by the Free Software Foundation.
576
+
577
+ If the Program specifies that a proxy can decide which future
578
+ versions of the GNU Affero General Public License can be used, that proxy's
579
+ public statement of acceptance of a version permanently authorizes you
580
+ to choose that version for the Program.
581
+
582
+ Later license versions may give you additional or different
583
+ permissions. However, no additional obligations are imposed on any
584
+ author or copyright holder as a result of your choosing to follow a
585
+ later version.
586
+
587
+ 15. Disclaimer of Warranty.
588
+
589
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597
+
598
+ 16. Limitation of Liability.
599
+
600
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608
+ SUCH DAMAGES.
609
+
610
+ 17. Interpretation of Sections 15 and 16.
611
+
612
+ If the disclaimer of warranty and limitation of liability provided
613
+ above cannot be given local legal effect according to their terms,
614
+ reviewing courts shall apply local law that most closely approximates
615
+ an absolute waiver of all civil liability in connection with the
616
+ Program, unless a warranty or assumption of liability accompanies a
617
+ copy of the Program in return for a fee.
618
+
619
+ END OF TERMS AND CONDITIONS
620
+
621
+ How to Apply These Terms to Your New Programs
622
+
623
+ If you develop a new program, and you want it to be of the greatest
624
+ possible use to the public, the best way to achieve this is to make it
625
+ free software which everyone can redistribute and change under these terms.
626
+
627
+ To do so, attach the following notices to the program. It is safest
628
+ to attach them to the start of each source file to most effectively
629
+ state the exclusion of warranty; and each file should have at least
630
+ the "copyright" line and a pointer to where the full notice is found.
631
+
632
+ <one line to give the program's name and a brief idea of what it does.>
633
+ Copyright (C) <year> <name of author>
634
+
635
+ This program is free software: you can redistribute it and/or modify
636
+ it under the terms of the GNU Affero General Public License as published
637
+ by the Free Software Foundation, either version 3 of the License, or
638
+ (at your option) any later version.
639
+
640
+ This program is distributed in the hope that it will be useful,
641
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
642
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643
+ GNU Affero General Public License for more details.
644
+
645
+ You should have received a copy of the GNU Affero General Public License
646
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
647
+
648
+ Also add information on how to contact you by electronic and paper mail.
649
+
650
+ If your software can interact with users remotely through a computer
651
+ network, you should also make sure that it provides a way for users to
652
+ get its source. For example, if your program is a web application, its
653
+ interface could display a "Source" link that leads users to an archive
654
+ of the code. There are many ways you could offer source, and different
655
+ solutions will be better for different programs; see section 13 for the
656
+ specific requirements.
657
+
658
+ You should also get your employer (if you work as a programmer) or school,
659
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
660
+ For more information on this, and how to apply and follow the GNU AGPL, see
661
+ <https://www.gnu.org/licenses/>.
app.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import logging
3
+ import os
4
+ import json
5
+ import torch
6
+ import argparse
7
+ import commons
8
+ import utils
9
+ import gradio as gr
10
+
11
+ from models import SynthesizerTrn
12
+ from text.symbols import symbols
13
+ from text import cleaned_text_to_sequence, get_bert
14
+ from text.cleaner import clean_text
15
+
16
+ logging.getLogger("numba").setLevel(logging.WARNING)
17
+ logging.getLogger("markdown_it").setLevel(logging.WARNING)
18
+ logging.getLogger("urllib3").setLevel(logging.WARNING)
19
+ logging.getLogger("matplotlib").setLevel(logging.WARNING)
20
+
21
+ logging.basicConfig(
22
+ level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
23
+ )
24
+
25
+ logger = logging.getLogger(__name__)
26
+ limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
27
+
28
+
29
+ def get_text(text, hps):
30
+ language_str = "JP"
31
+ norm_text, phone, tone, word2ph = clean_text(text, language_str)
32
+ phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
33
+
34
+ if hps.data.add_blank:
35
+ phone = commons.intersperse(phone, 0)
36
+ tone = commons.intersperse(tone, 0)
37
+ language = commons.intersperse(language, 0)
38
+ for i in range(len(word2ph)):
39
+ word2ph[i] = word2ph[i] * 2
40
+ word2ph[0] += 1
41
+ bert = get_bert(norm_text, word2ph, language_str, device)
42
+ del word2ph
43
+ assert bert.shape[-1] == len(phone), phone
44
+
45
+ ja_bert = bert
46
+ bert = torch.zeros(1024, len(phone))
47
+
48
+ assert bert.shape[-1] == len(
49
+ phone
50
+ ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
51
+
52
+ phone = torch.LongTensor(phone)
53
+ tone = torch.LongTensor(tone)
54
+ language = torch.LongTensor(language)
55
+ return bert, ja_bert, phone, tone, language
56
+
57
+
58
+ def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, net_g_ms, hps):
59
+ bert, ja_bert, phones, tones, lang_ids = get_text(text, hps)
60
+ with torch.no_grad():
61
+ x_tst = phones.to(device).unsqueeze(0)
62
+ tones = tones.to(device).unsqueeze(0)
63
+ lang_ids = lang_ids.to(device).unsqueeze(0)
64
+ bert = bert.to(device).unsqueeze(0)
65
+ ja_bert = ja_bert.to(device).unsqueeze(0)
66
+ x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
67
+ del phones
68
+ sid = torch.LongTensor([sid]).to(device)
69
+ audio = (
70
+ net_g_ms.infer(
71
+ x_tst,
72
+ x_tst_lengths,
73
+ sid,
74
+ tones,
75
+ lang_ids,
76
+ bert,
77
+ ja_bert,
78
+ sdp_ratio=sdp_ratio,
79
+ noise_scale=noise_scale,
80
+ noise_scale_w=noise_scale_w,
81
+ length_scale=length_scale,
82
+ )[0][0, 0]
83
+ .data.cpu()
84
+ .float()
85
+ .numpy()
86
+ )
87
+ del x_tst, tones, lang_ids, bert, x_tst_lengths, sid
88
+ torch.cuda.empty_cache()
89
+ return audio
90
+
91
+ def create_tts_fn(net_g_ms, hps):
92
+ def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
93
+ print(f"{text} | {speaker}")
94
+ sid = hps.data.spk2id[speaker]
95
+ text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
96
+ if limitation:
97
+ max_len = 100
98
+ if len(text) > max_len:
99
+ return "Error: Text is too long", None
100
+ audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w,
101
+ length_scale=length_scale, sid=sid, net_g_ms=net_g_ms, hps=hps)
102
+ return "Success", (hps.data.sampling_rate, audio)
103
+ return tts_fn
104
+
105
+ if __name__ == "__main__":
106
+ device = (
107
+ "cuda:0"
108
+ if torch.cuda.is_available()
109
+ else (
110
+ "mps"
111
+ if sys.platform == "darwin" and torch.backends.mps.is_available()
112
+ else "cpu"
113
+ )
114
+ )
115
+
116
+ parser = argparse.ArgumentParser()
117
+ parser.add_argument("--share", default=False, help="make link public", action="store_true")
118
+ parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log")
119
+ args = parser.parse_args()
120
+ if args.debug:
121
+ logger.info("Enable DEBUG-LEVEL log")
122
+ logging.basicConfig(level=logging.DEBUG)
123
+
124
+ models = []
125
+ with open("pretrained_models/info.json", "r", encoding="utf-8") as f:
126
+ models_info = json.load(f)
127
+ for i, info in models_info.items():
128
+ if not info['enable']:
129
+ continue
130
+ name = info['name']
131
+ title = info['title']
132
+ example = info['example']
133
+ hps = utils.get_hparams_from_file(f"./pretrained_models/{name}/config.json")
134
+ net_g_ms = SynthesizerTrn(
135
+ len(symbols),
136
+ hps.data.filter_length // 2 + 1,
137
+ hps.train.segment_size // hps.data.hop_length,
138
+ n_speakers=hps.data.n_speakers,
139
+ **hps.model)
140
+ utils.load_checkpoint(f'pretrained_models/{i}/{i}.pth', net_g_ms, None, skip_optimizer=True)
141
+ _ = net_g_ms.eval().to(device)
142
+ models.append((name, title, example, list(hps.data.spk2id.keys()), net_g_ms, create_tts_fn(net_g_ms, hps)))
143
+ with gr.Blocks(theme='NoCrypt/miku') as app:
144
+ with gr.Tabs():
145
+ for (name, title, example, speakers, net_g_ms, tts_fn) in models:
146
+ with gr.TabItem(name):
147
+ with gr.Row():
148
+ gr.Markdown(
149
+ '<div align="center">'
150
+ f'<a><strong>{title}</strong></a>'
151
+ f'</div>'
152
+ )
153
+ with gr.Row():
154
+ with gr.Column():
155
+ input_text = gr.Textbox(label="Text (100 words limitation)" if limitation else "Text", lines=5, value=example)
156
+ btn = gr.Button(value="Generate", variant="primary")
157
+ with gr.Row():
158
+ sp = gr.Dropdown(choices=speakers, value=speakers[0], label="Speaker")
159
+ with gr.Row():
160
+ sdpr = gr.Slider(label="SDP Ratio", minimum=0, maximum=1, step=0.1, value=0.2)
161
+ ns = gr.Slider(label="noise_scale", minimum=0.1, maximum=1.0, step=0.1, value=0.6)
162
+ nsw = gr.Slider(label="noise_scale_w", minimum=0.1, maximum=1.0, step=0.1, value=0.8)
163
+ ls = gr.Slider(label="length_scale", minimum=0.1, maximum=2.0, step=0.1, value=1)
164
+ with gr.Column():
165
+ o1 = gr.Textbox(label="Output Message")
166
+ o2 = gr.Audio(label="Output Audio")
167
+ btn.click(tts_fn, inputs=[input_text, sp, sdpr, ns, nsw, ls], outputs=[o1, o2])
168
+ app.queue(concurrency_count=1).launch(share=args.share)
attentions.py ADDED
@@ -0,0 +1,464 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+
6
+ import commons
7
+ import logging
8
+
9
+ logger = logging.getLogger(__name__)
10
+
11
+
12
+ class LayerNorm(nn.Module):
13
+ def __init__(self, channels, eps=1e-5):
14
+ super().__init__()
15
+ self.channels = channels
16
+ self.eps = eps
17
+
18
+ self.gamma = nn.Parameter(torch.ones(channels))
19
+ self.beta = nn.Parameter(torch.zeros(channels))
20
+
21
+ def forward(self, x):
22
+ x = x.transpose(1, -1)
23
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
24
+ return x.transpose(1, -1)
25
+
26
+
27
+ @torch.jit.script
28
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
29
+ n_channels_int = n_channels[0]
30
+ in_act = input_a + input_b
31
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
32
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
33
+ acts = t_act * s_act
34
+ return acts
35
+
36
+
37
+ class Encoder(nn.Module):
38
+ def __init__(
39
+ self,
40
+ hidden_channels,
41
+ filter_channels,
42
+ n_heads,
43
+ n_layers,
44
+ kernel_size=1,
45
+ p_dropout=0.0,
46
+ window_size=4,
47
+ isflow=True,
48
+ **kwargs
49
+ ):
50
+ super().__init__()
51
+ self.hidden_channels = hidden_channels
52
+ self.filter_channels = filter_channels
53
+ self.n_heads = n_heads
54
+ self.n_layers = n_layers
55
+ self.kernel_size = kernel_size
56
+ self.p_dropout = p_dropout
57
+ self.window_size = window_size
58
+ # if isflow:
59
+ # cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1)
60
+ # self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
61
+ # self.cond_layer = weight_norm(cond_layer, name='weight')
62
+ # self.gin_channels = 256
63
+ self.cond_layer_idx = self.n_layers
64
+ if "gin_channels" in kwargs:
65
+ self.gin_channels = kwargs["gin_channels"]
66
+ if self.gin_channels != 0:
67
+ self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
68
+ # vits2 says 3rd block, so idx is 2 by default
69
+ self.cond_layer_idx = (
70
+ kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2
71
+ )
72
+ logging.debug(self.gin_channels, self.cond_layer_idx)
73
+ assert (
74
+ self.cond_layer_idx < self.n_layers
75
+ ), "cond_layer_idx should be less than n_layers"
76
+ self.drop = nn.Dropout(p_dropout)
77
+ self.attn_layers = nn.ModuleList()
78
+ self.norm_layers_1 = nn.ModuleList()
79
+ self.ffn_layers = nn.ModuleList()
80
+ self.norm_layers_2 = nn.ModuleList()
81
+ for i in range(self.n_layers):
82
+ self.attn_layers.append(
83
+ MultiHeadAttention(
84
+ hidden_channels,
85
+ hidden_channels,
86
+ n_heads,
87
+ p_dropout=p_dropout,
88
+ window_size=window_size,
89
+ )
90
+ )
91
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
92
+ self.ffn_layers.append(
93
+ FFN(
94
+ hidden_channels,
95
+ hidden_channels,
96
+ filter_channels,
97
+ kernel_size,
98
+ p_dropout=p_dropout,
99
+ )
100
+ )
101
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
102
+
103
+ def forward(self, x, x_mask, g=None):
104
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
105
+ x = x * x_mask
106
+ for i in range(self.n_layers):
107
+ if i == self.cond_layer_idx and g is not None:
108
+ g = self.spk_emb_linear(g.transpose(1, 2))
109
+ g = g.transpose(1, 2)
110
+ x = x + g
111
+ x = x * x_mask
112
+ y = self.attn_layers[i](x, x, attn_mask)
113
+ y = self.drop(y)
114
+ x = self.norm_layers_1[i](x + y)
115
+
116
+ y = self.ffn_layers[i](x, x_mask)
117
+ y = self.drop(y)
118
+ x = self.norm_layers_2[i](x + y)
119
+ x = x * x_mask
120
+ return x
121
+
122
+
123
+ class Decoder(nn.Module):
124
+ def __init__(
125
+ self,
126
+ hidden_channels,
127
+ filter_channels,
128
+ n_heads,
129
+ n_layers,
130
+ kernel_size=1,
131
+ p_dropout=0.0,
132
+ proximal_bias=False,
133
+ proximal_init=True,
134
+ **kwargs
135
+ ):
136
+ super().__init__()
137
+ self.hidden_channels = hidden_channels
138
+ self.filter_channels = filter_channels
139
+ self.n_heads = n_heads
140
+ self.n_layers = n_layers
141
+ self.kernel_size = kernel_size
142
+ self.p_dropout = p_dropout
143
+ self.proximal_bias = proximal_bias
144
+ self.proximal_init = proximal_init
145
+
146
+ self.drop = nn.Dropout(p_dropout)
147
+ self.self_attn_layers = nn.ModuleList()
148
+ self.norm_layers_0 = nn.ModuleList()
149
+ self.encdec_attn_layers = nn.ModuleList()
150
+ self.norm_layers_1 = nn.ModuleList()
151
+ self.ffn_layers = nn.ModuleList()
152
+ self.norm_layers_2 = nn.ModuleList()
153
+ for i in range(self.n_layers):
154
+ self.self_attn_layers.append(
155
+ MultiHeadAttention(
156
+ hidden_channels,
157
+ hidden_channels,
158
+ n_heads,
159
+ p_dropout=p_dropout,
160
+ proximal_bias=proximal_bias,
161
+ proximal_init=proximal_init,
162
+ )
163
+ )
164
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
165
+ self.encdec_attn_layers.append(
166
+ MultiHeadAttention(
167
+ hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
168
+ )
169
+ )
170
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
171
+ self.ffn_layers.append(
172
+ FFN(
173
+ hidden_channels,
174
+ hidden_channels,
175
+ filter_channels,
176
+ kernel_size,
177
+ p_dropout=p_dropout,
178
+ causal=True,
179
+ )
180
+ )
181
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
182
+
183
+ def forward(self, x, x_mask, h, h_mask):
184
+ """
185
+ x: decoder input
186
+ h: encoder output
187
+ """
188
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
189
+ device=x.device, dtype=x.dtype
190
+ )
191
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
192
+ x = x * x_mask
193
+ for i in range(self.n_layers):
194
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
195
+ y = self.drop(y)
196
+ x = self.norm_layers_0[i](x + y)
197
+
198
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
199
+ y = self.drop(y)
200
+ x = self.norm_layers_1[i](x + y)
201
+
202
+ y = self.ffn_layers[i](x, x_mask)
203
+ y = self.drop(y)
204
+ x = self.norm_layers_2[i](x + y)
205
+ x = x * x_mask
206
+ return x
207
+
208
+
209
+ class MultiHeadAttention(nn.Module):
210
+ def __init__(
211
+ self,
212
+ channels,
213
+ out_channels,
214
+ n_heads,
215
+ p_dropout=0.0,
216
+ window_size=None,
217
+ heads_share=True,
218
+ block_length=None,
219
+ proximal_bias=False,
220
+ proximal_init=False,
221
+ ):
222
+ super().__init__()
223
+ assert channels % n_heads == 0
224
+
225
+ self.channels = channels
226
+ self.out_channels = out_channels
227
+ self.n_heads = n_heads
228
+ self.p_dropout = p_dropout
229
+ self.window_size = window_size
230
+ self.heads_share = heads_share
231
+ self.block_length = block_length
232
+ self.proximal_bias = proximal_bias
233
+ self.proximal_init = proximal_init
234
+ self.attn = None
235
+
236
+ self.k_channels = channels // n_heads
237
+ self.conv_q = nn.Conv1d(channels, channels, 1)
238
+ self.conv_k = nn.Conv1d(channels, channels, 1)
239
+ self.conv_v = nn.Conv1d(channels, channels, 1)
240
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
241
+ self.drop = nn.Dropout(p_dropout)
242
+
243
+ if window_size is not None:
244
+ n_heads_rel = 1 if heads_share else n_heads
245
+ rel_stddev = self.k_channels**-0.5
246
+ self.emb_rel_k = nn.Parameter(
247
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
248
+ * rel_stddev
249
+ )
250
+ self.emb_rel_v = nn.Parameter(
251
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
252
+ * rel_stddev
253
+ )
254
+
255
+ nn.init.xavier_uniform_(self.conv_q.weight)
256
+ nn.init.xavier_uniform_(self.conv_k.weight)
257
+ nn.init.xavier_uniform_(self.conv_v.weight)
258
+ if proximal_init:
259
+ with torch.no_grad():
260
+ self.conv_k.weight.copy_(self.conv_q.weight)
261
+ self.conv_k.bias.copy_(self.conv_q.bias)
262
+
263
+ def forward(self, x, c, attn_mask=None):
264
+ q = self.conv_q(x)
265
+ k = self.conv_k(c)
266
+ v = self.conv_v(c)
267
+
268
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
269
+
270
+ x = self.conv_o(x)
271
+ return x
272
+
273
+ def attention(self, query, key, value, mask=None):
274
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
275
+ b, d, t_s, t_t = (*key.size(), query.size(2))
276
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
277
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
278
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
279
+
280
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
281
+ if self.window_size is not None:
282
+ assert (
283
+ t_s == t_t
284
+ ), "Relative attention is only available for self-attention."
285
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
286
+ rel_logits = self._matmul_with_relative_keys(
287
+ query / math.sqrt(self.k_channels), key_relative_embeddings
288
+ )
289
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
290
+ scores = scores + scores_local
291
+ if self.proximal_bias:
292
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
293
+ scores = scores + self._attention_bias_proximal(t_s).to(
294
+ device=scores.device, dtype=scores.dtype
295
+ )
296
+ if mask is not None:
297
+ scores = scores.masked_fill(mask == 0, -1e4)
298
+ if self.block_length is not None:
299
+ assert (
300
+ t_s == t_t
301
+ ), "Local attention is only available for self-attention."
302
+ block_mask = (
303
+ torch.ones_like(scores)
304
+ .triu(-self.block_length)
305
+ .tril(self.block_length)
306
+ )
307
+ scores = scores.masked_fill(block_mask == 0, -1e4)
308
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
309
+ p_attn = self.drop(p_attn)
310
+ output = torch.matmul(p_attn, value)
311
+ if self.window_size is not None:
312
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
313
+ value_relative_embeddings = self._get_relative_embeddings(
314
+ self.emb_rel_v, t_s
315
+ )
316
+ output = output + self._matmul_with_relative_values(
317
+ relative_weights, value_relative_embeddings
318
+ )
319
+ output = (
320
+ output.transpose(2, 3).contiguous().view(b, d, t_t)
321
+ ) # [b, n_h, t_t, d_k] -> [b, d, t_t]
322
+ return output, p_attn
323
+
324
+ def _matmul_with_relative_values(self, x, y):
325
+ """
326
+ x: [b, h, l, m]
327
+ y: [h or 1, m, d]
328
+ ret: [b, h, l, d]
329
+ """
330
+ ret = torch.matmul(x, y.unsqueeze(0))
331
+ return ret
332
+
333
+ def _matmul_with_relative_keys(self, x, y):
334
+ """
335
+ x: [b, h, l, d]
336
+ y: [h or 1, m, d]
337
+ ret: [b, h, l, m]
338
+ """
339
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
340
+ return ret
341
+
342
+ def _get_relative_embeddings(self, relative_embeddings, length):
343
+ 2 * self.window_size + 1
344
+ # Pad first before slice to avoid using cond ops.
345
+ pad_length = max(length - (self.window_size + 1), 0)
346
+ slice_start_position = max((self.window_size + 1) - length, 0)
347
+ slice_end_position = slice_start_position + 2 * length - 1
348
+ if pad_length > 0:
349
+ padded_relative_embeddings = F.pad(
350
+ relative_embeddings,
351
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
352
+ )
353
+ else:
354
+ padded_relative_embeddings = relative_embeddings
355
+ used_relative_embeddings = padded_relative_embeddings[
356
+ :, slice_start_position:slice_end_position
357
+ ]
358
+ return used_relative_embeddings
359
+
360
+ def _relative_position_to_absolute_position(self, x):
361
+ """
362
+ x: [b, h, l, 2*l-1]
363
+ ret: [b, h, l, l]
364
+ """
365
+ batch, heads, length, _ = x.size()
366
+ # Concat columns of pad to shift from relative to absolute indexing.
367
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
368
+
369
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
370
+ x_flat = x.view([batch, heads, length * 2 * length])
371
+ x_flat = F.pad(
372
+ x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
373
+ )
374
+
375
+ # Reshape and slice out the padded elements.
376
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
377
+ :, :, :length, length - 1 :
378
+ ]
379
+ return x_final
380
+
381
+ def _absolute_position_to_relative_position(self, x):
382
+ """
383
+ x: [b, h, l, l]
384
+ ret: [b, h, l, 2*l-1]
385
+ """
386
+ batch, heads, length, _ = x.size()
387
+ # pad along column
388
+ x = F.pad(
389
+ x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
390
+ )
391
+ x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
392
+ # add 0's in the beginning that will skew the elements after reshape
393
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
394
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
395
+ return x_final
396
+
397
+ def _attention_bias_proximal(self, length):
398
+ """Bias for self-attention to encourage attention to close positions.
399
+ Args:
400
+ length: an integer scalar.
401
+ Returns:
402
+ a Tensor with shape [1, 1, length, length]
403
+ """
404
+ r = torch.arange(length, dtype=torch.float32)
405
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
406
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
407
+
408
+
409
+ class FFN(nn.Module):
410
+ def __init__(
411
+ self,
412
+ in_channels,
413
+ out_channels,
414
+ filter_channels,
415
+ kernel_size,
416
+ p_dropout=0.0,
417
+ activation=None,
418
+ causal=False,
419
+ ):
420
+ super().__init__()
421
+ self.in_channels = in_channels
422
+ self.out_channels = out_channels
423
+ self.filter_channels = filter_channels
424
+ self.kernel_size = kernel_size
425
+ self.p_dropout = p_dropout
426
+ self.activation = activation
427
+ self.causal = causal
428
+
429
+ if causal:
430
+ self.padding = self._causal_padding
431
+ else:
432
+ self.padding = self._same_padding
433
+
434
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
435
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
436
+ self.drop = nn.Dropout(p_dropout)
437
+
438
+ def forward(self, x, x_mask):
439
+ x = self.conv_1(self.padding(x * x_mask))
440
+ if self.activation == "gelu":
441
+ x = x * torch.sigmoid(1.702 * x)
442
+ else:
443
+ x = torch.relu(x)
444
+ x = self.drop(x)
445
+ x = self.conv_2(self.padding(x * x_mask))
446
+ return x * x_mask
447
+
448
+ def _causal_padding(self, x):
449
+ if self.kernel_size == 1:
450
+ return x
451
+ pad_l = self.kernel_size - 1
452
+ pad_r = 0
453
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
454
+ x = F.pad(x, commons.convert_pad_shape(padding))
455
+ return x
456
+
457
+ def _same_padding(self, x):
458
+ if self.kernel_size == 1:
459
+ return x
460
+ pad_l = (self.kernel_size - 1) // 2
461
+ pad_r = self.kernel_size // 2
462
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
463
+ x = F.pad(x, commons.convert_pad_shape(padding))
464
+ return x
bert/bert-base-japanese-v3/README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - cc100
5
+ - wikipedia
6
+ language:
7
+ - ja
8
+ widget:
9
+ - text: 東北大学で[MASK]の研究をしています。
10
+ ---
11
+
12
+ # BERT base Japanese (unidic-lite with whole word masking, CC-100 and jawiki-20230102)
13
+
14
+ This is a [BERT](https://github.com/google-research/bert) model pretrained on texts in the Japanese language.
15
+
16
+ This version of the model processes input texts with word-level tokenization based on the Unidic 2.1.2 dictionary (available in [unidic-lite](https://pypi.org/project/unidic-lite/) package), followed by the WordPiece subword tokenization.
17
+ Additionally, the model is trained with the whole word masking enabled for the masked language modeling (MLM) objective.
18
+
19
+ The codes for the pretraining are available at [cl-tohoku/bert-japanese](https://github.com/cl-tohoku/bert-japanese/).
20
+
21
+ ## Model architecture
22
+
23
+ The model architecture is the same as the original BERT base model; 12 layers, 768 dimensions of hidden states, and 12 attention heads.
24
+
25
+ ## Training Data
26
+
27
+ The model is trained on the Japanese portion of [CC-100 dataset](https://data.statmt.org/cc-100/) and the Japanese version of Wikipedia.
28
+ For Wikipedia, we generated a text corpus from the [Wikipedia Cirrussearch dump file](https://dumps.wikimedia.org/other/cirrussearch/) as of January 2, 2023.
29
+ The corpus files generated from CC-100 and Wikipedia are 74.3GB and 4.9GB in size and consist of approximately 392M and 34M sentences, respectively.
30
+
31
+ For the purpose of splitting texts into sentences, we used [fugashi](https://github.com/polm/fugashi) with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd) dictionary (v0.0.7).
32
+
33
+ ## Tokenization
34
+
35
+ The texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into subwords by the WordPiece algorithm.
36
+ The vocabulary size is 32768.
37
+
38
+ We used [fugashi](https://github.com/polm/fugashi) and [unidic-lite](https://github.com/polm/unidic-lite) packages for the tokenization.
39
+
40
+ ## Training
41
+
42
+ We trained the model first on the CC-100 corpus for 1M steps and then on the Wikipedia corpus for another 1M steps.
43
+ For training of the MLM (masked language modeling) objective, we introduced whole word masking in which all of the subword tokens corresponding to a single word (tokenized by MeCab) are masked at once.
44
+
45
+ For training of each model, we used a v3-8 instance of Cloud TPUs provided by [TPU Research Cloud](https://sites.research.google/trc/about/).
46
+
47
+ ## Licenses
48
+
49
+ The pretrained models are distributed under the Apache License 2.0.
50
+
51
+ ## Acknowledgments
52
+
53
+ This model is trained with Cloud TPUs provided by [TPU Research Cloud](https://sites.research.google/trc/about/) program.
bert/bert-base-japanese-v3/config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForPreTraining"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "hidden_act": "gelu",
7
+ "hidden_dropout_prob": 0.1,
8
+ "hidden_size": 768,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 3072,
11
+ "layer_norm_eps": 1e-12,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "bert",
14
+ "num_attention_heads": 12,
15
+ "num_hidden_layers": 12,
16
+ "pad_token_id": 0,
17
+ "type_vocab_size": 2,
18
+ "vocab_size": 32768
19
+ }
bert/bert-base-japanese-v3/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e172862e0674054d65e0ba40d67df2a4687982f589db44aa27091c386e5450a4
3
+ size 447406217
bert/bert-base-japanese-v3/tokenizer_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "tokenizer_class": "BertJapaneseTokenizer",
3
+ "model_max_length": 512,
4
+ "do_lower_case": false,
5
+ "word_tokenizer_type": "mecab",
6
+ "subword_tokenizer_type": "wordpiece",
7
+ "mecab_kwargs": {
8
+ "mecab_dic": "unidic_lite"
9
+ }
10
+ }
bert/bert-base-japanese-v3/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
commons.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch.nn import functional as F
4
+
5
+
6
+ def init_weights(m, mean=0.0, std=0.01):
7
+ classname = m.__class__.__name__
8
+ if classname.find("Conv") != -1:
9
+ m.weight.data.normal_(mean, std)
10
+
11
+
12
+ def get_padding(kernel_size, dilation=1):
13
+ return int((kernel_size * dilation - dilation) / 2)
14
+
15
+
16
+ def convert_pad_shape(pad_shape):
17
+ layer = pad_shape[::-1]
18
+ pad_shape = [item for sublist in layer for item in sublist]
19
+ return pad_shape
20
+
21
+
22
+ def intersperse(lst, item):
23
+ result = [item] * (len(lst) * 2 + 1)
24
+ result[1::2] = lst
25
+ return result
26
+
27
+
28
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
29
+ """KL(P||Q)"""
30
+ kl = (logs_q - logs_p) - 0.5
31
+ kl += (
32
+ 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
33
+ )
34
+ return kl
35
+
36
+
37
+ def rand_gumbel(shape):
38
+ """Sample from the Gumbel distribution, protect from overflows."""
39
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40
+ return -torch.log(-torch.log(uniform_samples))
41
+
42
+
43
+ def rand_gumbel_like(x):
44
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45
+ return g
46
+
47
+
48
+ def slice_segments(x, ids_str, segment_size=4):
49
+ ret = torch.zeros_like(x[:, :, :segment_size])
50
+ for i in range(x.size(0)):
51
+ idx_str = ids_str[i]
52
+ idx_end = idx_str + segment_size
53
+ ret[i] = x[i, :, idx_str:idx_end]
54
+ return ret
55
+
56
+
57
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
58
+ b, d, t = x.size()
59
+ if x_lengths is None:
60
+ x_lengths = t
61
+ ids_str_max = x_lengths - segment_size + 1
62
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
63
+ ret = slice_segments(x, ids_str, segment_size)
64
+ return ret, ids_str
65
+
66
+
67
+ def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
68
+ position = torch.arange(length, dtype=torch.float)
69
+ num_timescales = channels // 2
70
+ log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
71
+ num_timescales - 1
72
+ )
73
+ inv_timescales = min_timescale * torch.exp(
74
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
75
+ )
76
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
77
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
78
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
79
+ signal = signal.view(1, channels, length)
80
+ return signal
81
+
82
+
83
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
84
+ b, channels, length = x.size()
85
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
86
+ return x + signal.to(dtype=x.dtype, device=x.device)
87
+
88
+
89
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
90
+ b, channels, length = x.size()
91
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
92
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
93
+
94
+
95
+ def subsequent_mask(length):
96
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
97
+ return mask
98
+
99
+
100
+ @torch.jit.script
101
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
102
+ n_channels_int = n_channels[0]
103
+ in_act = input_a + input_b
104
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
105
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
106
+ acts = t_act * s_act
107
+ return acts
108
+
109
+
110
+ def convert_pad_shape(pad_shape):
111
+ layer = pad_shape[::-1]
112
+ pad_shape = [item for sublist in layer for item in sublist]
113
+ return pad_shape
114
+
115
+
116
+ def shift_1d(x):
117
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
118
+ return x
119
+
120
+
121
+ def sequence_mask(length, max_length=None):
122
+ if max_length is None:
123
+ max_length = length.max()
124
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
125
+ return x.unsqueeze(0) < length.unsqueeze(1)
126
+
127
+
128
+ def generate_path(duration, mask):
129
+ """
130
+ duration: [b, 1, t_x]
131
+ mask: [b, 1, t_y, t_x]
132
+ """
133
+
134
+ b, _, t_y, t_x = mask.shape
135
+ cum_duration = torch.cumsum(duration, -1)
136
+
137
+ cum_duration_flat = cum_duration.view(b * t_x)
138
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
139
+ path = path.view(b, t_x, t_y)
140
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
141
+ path = path.unsqueeze(1).transpose(2, 3) * mask
142
+ return path
143
+
144
+
145
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
146
+ if isinstance(parameters, torch.Tensor):
147
+ parameters = [parameters]
148
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
149
+ norm_type = float(norm_type)
150
+ if clip_value is not None:
151
+ clip_value = float(clip_value)
152
+
153
+ total_norm = 0
154
+ for p in parameters:
155
+ param_norm = p.grad.data.norm(norm_type)
156
+ total_norm += param_norm.item() ** norm_type
157
+ if clip_value is not None:
158
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
159
+ total_norm = total_norm ** (1.0 / norm_type)
160
+ return total_norm
mel_processing.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.utils.data
3
+ from librosa.filters import mel as librosa_mel_fn
4
+
5
+ MAX_WAV_VALUE = 32768.0
6
+
7
+
8
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
9
+ """
10
+ PARAMS
11
+ ------
12
+ C: compression factor
13
+ """
14
+ return torch.log(torch.clamp(x, min=clip_val) * C)
15
+
16
+
17
+ def dynamic_range_decompression_torch(x, C=1):
18
+ """
19
+ PARAMS
20
+ ------
21
+ C: compression factor used to compress
22
+ """
23
+ return torch.exp(x) / C
24
+
25
+
26
+ def spectral_normalize_torch(magnitudes):
27
+ output = dynamic_range_compression_torch(magnitudes)
28
+ return output
29
+
30
+
31
+ def spectral_de_normalize_torch(magnitudes):
32
+ output = dynamic_range_decompression_torch(magnitudes)
33
+ return output
34
+
35
+
36
+ mel_basis = {}
37
+ hann_window = {}
38
+
39
+
40
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
41
+ if torch.min(y) < -1.0:
42
+ print("min value is ", torch.min(y))
43
+ if torch.max(y) > 1.0:
44
+ print("max value is ", torch.max(y))
45
+
46
+ global hann_window
47
+ dtype_device = str(y.dtype) + "_" + str(y.device)
48
+ wnsize_dtype_device = str(win_size) + "_" + dtype_device
49
+ if wnsize_dtype_device not in hann_window:
50
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
51
+ dtype=y.dtype, device=y.device
52
+ )
53
+
54
+ y = torch.nn.functional.pad(
55
+ y.unsqueeze(1),
56
+ (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
57
+ mode="reflect",
58
+ )
59
+ y = y.squeeze(1)
60
+
61
+ spec = torch.stft(
62
+ y,
63
+ n_fft,
64
+ hop_length=hop_size,
65
+ win_length=win_size,
66
+ window=hann_window[wnsize_dtype_device],
67
+ center=center,
68
+ pad_mode="reflect",
69
+ normalized=False,
70
+ onesided=True,
71
+ return_complex=False,
72
+ )
73
+
74
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
75
+ return spec
76
+
77
+
78
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
79
+ global mel_basis
80
+ dtype_device = str(spec.dtype) + "_" + str(spec.device)
81
+ fmax_dtype_device = str(fmax) + "_" + dtype_device
82
+ if fmax_dtype_device not in mel_basis:
83
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
84
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
85
+ dtype=spec.dtype, device=spec.device
86
+ )
87
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
88
+ spec = spectral_normalize_torch(spec)
89
+ return spec
90
+
91
+
92
+ def mel_spectrogram_torch(
93
+ y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
94
+ ):
95
+ if torch.min(y) < -1.0:
96
+ print("min value is ", torch.min(y))
97
+ if torch.max(y) > 1.0:
98
+ print("max value is ", torch.max(y))
99
+
100
+ global mel_basis, hann_window
101
+ dtype_device = str(y.dtype) + "_" + str(y.device)
102
+ fmax_dtype_device = str(fmax) + "_" + dtype_device
103
+ wnsize_dtype_device = str(win_size) + "_" + dtype_device
104
+ if fmax_dtype_device not in mel_basis:
105
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
106
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
107
+ dtype=y.dtype, device=y.device
108
+ )
109
+ if wnsize_dtype_device not in hann_window:
110
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
111
+ dtype=y.dtype, device=y.device
112
+ )
113
+
114
+ y = torch.nn.functional.pad(
115
+ y.unsqueeze(1),
116
+ (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
117
+ mode="reflect",
118
+ )
119
+ y = y.squeeze(1)
120
+
121
+ spec = torch.stft(
122
+ y,
123
+ n_fft,
124
+ hop_length=hop_size,
125
+ win_length=win_size,
126
+ window=hann_window[wnsize_dtype_device],
127
+ center=center,
128
+ pad_mode="reflect",
129
+ normalized=False,
130
+ onesided=True,
131
+ return_complex=False,
132
+ )
133
+
134
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
135
+
136
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
137
+ spec = spectral_normalize_torch(spec)
138
+
139
+ return spec
models.py ADDED
@@ -0,0 +1,986 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+
6
+ import commons
7
+ import modules
8
+ import attentions
9
+ import monotonic_align
10
+
11
+ from torch.nn import Conv1d, ConvTranspose1d, Conv2d
12
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
13
+
14
+ from commons import init_weights, get_padding
15
+ from text import symbols, num_tones, num_languages
16
+
17
+
18
+ class DurationDiscriminator(nn.Module): # vits2
19
+ def __init__(
20
+ self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
21
+ ):
22
+ super().__init__()
23
+
24
+ self.in_channels = in_channels
25
+ self.filter_channels = filter_channels
26
+ self.kernel_size = kernel_size
27
+ self.p_dropout = p_dropout
28
+ self.gin_channels = gin_channels
29
+
30
+ self.drop = nn.Dropout(p_dropout)
31
+ self.conv_1 = nn.Conv1d(
32
+ in_channels, filter_channels, kernel_size, padding=kernel_size // 2
33
+ )
34
+ self.norm_1 = modules.LayerNorm(filter_channels)
35
+ self.conv_2 = nn.Conv1d(
36
+ filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
37
+ )
38
+ self.norm_2 = modules.LayerNorm(filter_channels)
39
+ self.dur_proj = nn.Conv1d(1, filter_channels, 1)
40
+
41
+ self.pre_out_conv_1 = nn.Conv1d(
42
+ 2 * filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
43
+ )
44
+ self.pre_out_norm_1 = modules.LayerNorm(filter_channels)
45
+ self.pre_out_conv_2 = nn.Conv1d(
46
+ filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
47
+ )
48
+ self.pre_out_norm_2 = modules.LayerNorm(filter_channels)
49
+
50
+ if gin_channels != 0:
51
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
52
+
53
+ self.output_layer = nn.Sequential(nn.Linear(filter_channels, 1), nn.Sigmoid())
54
+
55
+ def forward_probability(self, x, x_mask, dur, g=None):
56
+ dur = self.dur_proj(dur)
57
+ x = torch.cat([x, dur], dim=1)
58
+ x = self.pre_out_conv_1(x * x_mask)
59
+ x = torch.relu(x)
60
+ x = self.pre_out_norm_1(x)
61
+ x = self.drop(x)
62
+ x = self.pre_out_conv_2(x * x_mask)
63
+ x = torch.relu(x)
64
+ x = self.pre_out_norm_2(x)
65
+ x = self.drop(x)
66
+ x = x * x_mask
67
+ x = x.transpose(1, 2)
68
+ output_prob = self.output_layer(x)
69
+ return output_prob
70
+
71
+ def forward(self, x, x_mask, dur_r, dur_hat, g=None):
72
+ x = torch.detach(x)
73
+ if g is not None:
74
+ g = torch.detach(g)
75
+ x = x + self.cond(g)
76
+ x = self.conv_1(x * x_mask)
77
+ x = torch.relu(x)
78
+ x = self.norm_1(x)
79
+ x = self.drop(x)
80
+ x = self.conv_2(x * x_mask)
81
+ x = torch.relu(x)
82
+ x = self.norm_2(x)
83
+ x = self.drop(x)
84
+
85
+ output_probs = []
86
+ for dur in [dur_r, dur_hat]:
87
+ output_prob = self.forward_probability(x, x_mask, dur, g)
88
+ output_probs.append(output_prob)
89
+
90
+ return output_probs
91
+
92
+
93
+ class TransformerCouplingBlock(nn.Module):
94
+ def __init__(
95
+ self,
96
+ channels,
97
+ hidden_channels,
98
+ filter_channels,
99
+ n_heads,
100
+ n_layers,
101
+ kernel_size,
102
+ p_dropout,
103
+ n_flows=4,
104
+ gin_channels=0,
105
+ share_parameter=False,
106
+ ):
107
+ super().__init__()
108
+ self.channels = channels
109
+ self.hidden_channels = hidden_channels
110
+ self.kernel_size = kernel_size
111
+ self.n_layers = n_layers
112
+ self.n_flows = n_flows
113
+ self.gin_channels = gin_channels
114
+
115
+ self.flows = nn.ModuleList()
116
+
117
+ self.wn = (
118
+ attentions.FFT(
119
+ hidden_channels,
120
+ filter_channels,
121
+ n_heads,
122
+ n_layers,
123
+ kernel_size,
124
+ p_dropout,
125
+ isflow=True,
126
+ gin_channels=self.gin_channels,
127
+ )
128
+ if share_parameter
129
+ else None
130
+ )
131
+
132
+ for i in range(n_flows):
133
+ self.flows.append(
134
+ modules.TransformerCouplingLayer(
135
+ channels,
136
+ hidden_channels,
137
+ kernel_size,
138
+ n_layers,
139
+ n_heads,
140
+ p_dropout,
141
+ filter_channels,
142
+ mean_only=True,
143
+ wn_sharing_parameter=self.wn,
144
+ gin_channels=self.gin_channels,
145
+ )
146
+ )
147
+ self.flows.append(modules.Flip())
148
+
149
+ def forward(self, x, x_mask, g=None, reverse=False):
150
+ if not reverse:
151
+ for flow in self.flows:
152
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
153
+ else:
154
+ for flow in reversed(self.flows):
155
+ x = flow(x, x_mask, g=g, reverse=reverse)
156
+ return x
157
+
158
+
159
+ class StochasticDurationPredictor(nn.Module):
160
+ def __init__(
161
+ self,
162
+ in_channels,
163
+ filter_channels,
164
+ kernel_size,
165
+ p_dropout,
166
+ n_flows=4,
167
+ gin_channels=0,
168
+ ):
169
+ super().__init__()
170
+ filter_channels = in_channels # it needs to be removed from future version.
171
+ self.in_channels = in_channels
172
+ self.filter_channels = filter_channels
173
+ self.kernel_size = kernel_size
174
+ self.p_dropout = p_dropout
175
+ self.n_flows = n_flows
176
+ self.gin_channels = gin_channels
177
+
178
+ self.log_flow = modules.Log()
179
+ self.flows = nn.ModuleList()
180
+ self.flows.append(modules.ElementwiseAffine(2))
181
+ for i in range(n_flows):
182
+ self.flows.append(
183
+ modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
184
+ )
185
+ self.flows.append(modules.Flip())
186
+
187
+ self.post_pre = nn.Conv1d(1, filter_channels, 1)
188
+ self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
189
+ self.post_convs = modules.DDSConv(
190
+ filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
191
+ )
192
+ self.post_flows = nn.ModuleList()
193
+ self.post_flows.append(modules.ElementwiseAffine(2))
194
+ for i in range(4):
195
+ self.post_flows.append(
196
+ modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
197
+ )
198
+ self.post_flows.append(modules.Flip())
199
+
200
+ self.pre = nn.Conv1d(in_channels, filter_channels, 1)
201
+ self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
202
+ self.convs = modules.DDSConv(
203
+ filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
204
+ )
205
+ if gin_channels != 0:
206
+ self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
207
+
208
+ def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
209
+ x = torch.detach(x)
210
+ x = self.pre(x)
211
+ if g is not None:
212
+ g = torch.detach(g)
213
+ x = x + self.cond(g)
214
+ x = self.convs(x, x_mask)
215
+ x = self.proj(x) * x_mask
216
+
217
+ if not reverse:
218
+ flows = self.flows
219
+ assert w is not None
220
+
221
+ logdet_tot_q = 0
222
+ h_w = self.post_pre(w)
223
+ h_w = self.post_convs(h_w, x_mask)
224
+ h_w = self.post_proj(h_w) * x_mask
225
+ e_q = (
226
+ torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
227
+ * x_mask
228
+ )
229
+ z_q = e_q
230
+ for flow in self.post_flows:
231
+ z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
232
+ logdet_tot_q += logdet_q
233
+ z_u, z1 = torch.split(z_q, [1, 1], 1)
234
+ u = torch.sigmoid(z_u) * x_mask
235
+ z0 = (w - u) * x_mask
236
+ logdet_tot_q += torch.sum(
237
+ (F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
238
+ )
239
+ logq = (
240
+ torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
241
+ - logdet_tot_q
242
+ )
243
+
244
+ logdet_tot = 0
245
+ z0, logdet = self.log_flow(z0, x_mask)
246
+ logdet_tot += logdet
247
+ z = torch.cat([z0, z1], 1)
248
+ for flow in flows:
249
+ z, logdet = flow(z, x_mask, g=x, reverse=reverse)
250
+ logdet_tot = logdet_tot + logdet
251
+ nll = (
252
+ torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
253
+ - logdet_tot
254
+ )
255
+ return nll + logq # [b]
256
+ else:
257
+ flows = list(reversed(self.flows))
258
+ flows = flows[:-2] + [flows[-1]] # remove a useless vflow
259
+ z = (
260
+ torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
261
+ * noise_scale
262
+ )
263
+ for flow in flows:
264
+ z = flow(z, x_mask, g=x, reverse=reverse)
265
+ z0, z1 = torch.split(z, [1, 1], 1)
266
+ logw = z0
267
+ return logw
268
+
269
+
270
+ class DurationPredictor(nn.Module):
271
+ def __init__(
272
+ self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
273
+ ):
274
+ super().__init__()
275
+
276
+ self.in_channels = in_channels
277
+ self.filter_channels = filter_channels
278
+ self.kernel_size = kernel_size
279
+ self.p_dropout = p_dropout
280
+ self.gin_channels = gin_channels
281
+
282
+ self.drop = nn.Dropout(p_dropout)
283
+ self.conv_1 = nn.Conv1d(
284
+ in_channels, filter_channels, kernel_size, padding=kernel_size // 2
285
+ )
286
+ self.norm_1 = modules.LayerNorm(filter_channels)
287
+ self.conv_2 = nn.Conv1d(
288
+ filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
289
+ )
290
+ self.norm_2 = modules.LayerNorm(filter_channels)
291
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
292
+
293
+ if gin_channels != 0:
294
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
295
+
296
+ def forward(self, x, x_mask, g=None):
297
+ x = torch.detach(x)
298
+ if g is not None:
299
+ g = torch.detach(g)
300
+ x = x + self.cond(g)
301
+ x = self.conv_1(x * x_mask)
302
+ x = torch.relu(x)
303
+ x = self.norm_1(x)
304
+ x = self.drop(x)
305
+ x = self.conv_2(x * x_mask)
306
+ x = torch.relu(x)
307
+ x = self.norm_2(x)
308
+ x = self.drop(x)
309
+ x = self.proj(x * x_mask)
310
+ return x * x_mask
311
+
312
+
313
+ class TextEncoder(nn.Module):
314
+ def __init__(
315
+ self,
316
+ n_vocab,
317
+ out_channels,
318
+ hidden_channels,
319
+ filter_channels,
320
+ n_heads,
321
+ n_layers,
322
+ kernel_size,
323
+ p_dropout,
324
+ gin_channels=0,
325
+ ):
326
+ super().__init__()
327
+ self.n_vocab = n_vocab
328
+ self.out_channels = out_channels
329
+ self.hidden_channels = hidden_channels
330
+ self.filter_channels = filter_channels
331
+ self.n_heads = n_heads
332
+ self.n_layers = n_layers
333
+ self.kernel_size = kernel_size
334
+ self.p_dropout = p_dropout
335
+ self.gin_channels = gin_channels
336
+ self.emb = nn.Embedding(len(symbols), hidden_channels)
337
+ nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
338
+ self.tone_emb = nn.Embedding(num_tones, hidden_channels)
339
+ nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels**-0.5)
340
+ self.language_emb = nn.Embedding(num_languages, hidden_channels)
341
+ nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels**-0.5)
342
+ self.bert_proj = nn.Conv1d(1024, hidden_channels, 1)
343
+ self.ja_bert_proj = nn.Conv1d(768, hidden_channels, 1)
344
+
345
+ self.encoder = attentions.Encoder(
346
+ hidden_channels,
347
+ filter_channels,
348
+ n_heads,
349
+ n_layers,
350
+ kernel_size,
351
+ p_dropout,
352
+ gin_channels=self.gin_channels,
353
+ )
354
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
355
+
356
+ def forward(self, x, x_lengths, tone, language, bert, ja_bert, g=None):
357
+ bert_emb = self.bert_proj(bert).transpose(1, 2)
358
+ ja_bert_emb = self.ja_bert_proj(ja_bert).transpose(1, 2)
359
+ x = (
360
+ self.emb(x)
361
+ + self.tone_emb(tone)
362
+ + self.language_emb(language)
363
+ + bert_emb
364
+ + ja_bert_emb
365
+ ) * math.sqrt(
366
+ self.hidden_channels
367
+ ) # [b, t, h]
368
+ x = torch.transpose(x, 1, -1) # [b, h, t]
369
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
370
+ x.dtype
371
+ )
372
+
373
+ x = self.encoder(x * x_mask, x_mask, g=g)
374
+ stats = self.proj(x) * x_mask
375
+
376
+ m, logs = torch.split(stats, self.out_channels, dim=1)
377
+ return x, m, logs, x_mask
378
+
379
+
380
+ class ResidualCouplingBlock(nn.Module):
381
+ def __init__(
382
+ self,
383
+ channels,
384
+ hidden_channels,
385
+ kernel_size,
386
+ dilation_rate,
387
+ n_layers,
388
+ n_flows=4,
389
+ gin_channels=0,
390
+ ):
391
+ super().__init__()
392
+ self.channels = channels
393
+ self.hidden_channels = hidden_channels
394
+ self.kernel_size = kernel_size
395
+ self.dilation_rate = dilation_rate
396
+ self.n_layers = n_layers
397
+ self.n_flows = n_flows
398
+ self.gin_channels = gin_channels
399
+
400
+ self.flows = nn.ModuleList()
401
+ for i in range(n_flows):
402
+ self.flows.append(
403
+ modules.ResidualCouplingLayer(
404
+ channels,
405
+ hidden_channels,
406
+ kernel_size,
407
+ dilation_rate,
408
+ n_layers,
409
+ gin_channels=gin_channels,
410
+ mean_only=True,
411
+ )
412
+ )
413
+ self.flows.append(modules.Flip())
414
+
415
+ def forward(self, x, x_mask, g=None, reverse=False):
416
+ if not reverse:
417
+ for flow in self.flows:
418
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
419
+ else:
420
+ for flow in reversed(self.flows):
421
+ x = flow(x, x_mask, g=g, reverse=reverse)
422
+ return x
423
+
424
+
425
+ class PosteriorEncoder(nn.Module):
426
+ def __init__(
427
+ self,
428
+ in_channels,
429
+ out_channels,
430
+ hidden_channels,
431
+ kernel_size,
432
+ dilation_rate,
433
+ n_layers,
434
+ gin_channels=0,
435
+ ):
436
+ super().__init__()
437
+ self.in_channels = in_channels
438
+ self.out_channels = out_channels
439
+ self.hidden_channels = hidden_channels
440
+ self.kernel_size = kernel_size
441
+ self.dilation_rate = dilation_rate
442
+ self.n_layers = n_layers
443
+ self.gin_channels = gin_channels
444
+
445
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
446
+ self.enc = modules.WN(
447
+ hidden_channels,
448
+ kernel_size,
449
+ dilation_rate,
450
+ n_layers,
451
+ gin_channels=gin_channels,
452
+ )
453
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
454
+
455
+ def forward(self, x, x_lengths, g=None):
456
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
457
+ x.dtype
458
+ )
459
+ x = self.pre(x) * x_mask
460
+ x = self.enc(x, x_mask, g=g)
461
+ stats = self.proj(x) * x_mask
462
+ m, logs = torch.split(stats, self.out_channels, dim=1)
463
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
464
+ return z, m, logs, x_mask
465
+
466
+
467
+ class Generator(torch.nn.Module):
468
+ def __init__(
469
+ self,
470
+ initial_channel,
471
+ resblock,
472
+ resblock_kernel_sizes,
473
+ resblock_dilation_sizes,
474
+ upsample_rates,
475
+ upsample_initial_channel,
476
+ upsample_kernel_sizes,
477
+ gin_channels=0,
478
+ ):
479
+ super(Generator, self).__init__()
480
+ self.num_kernels = len(resblock_kernel_sizes)
481
+ self.num_upsamples = len(upsample_rates)
482
+ self.conv_pre = Conv1d(
483
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
484
+ )
485
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
486
+
487
+ self.ups = nn.ModuleList()
488
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
489
+ self.ups.append(
490
+ weight_norm(
491
+ ConvTranspose1d(
492
+ upsample_initial_channel // (2**i),
493
+ upsample_initial_channel // (2 ** (i + 1)),
494
+ k,
495
+ u,
496
+ padding=(k - u) // 2,
497
+ )
498
+ )
499
+ )
500
+
501
+ self.resblocks = nn.ModuleList()
502
+ for i in range(len(self.ups)):
503
+ ch = upsample_initial_channel // (2 ** (i + 1))
504
+ for j, (k, d) in enumerate(
505
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
506
+ ):
507
+ self.resblocks.append(resblock(ch, k, d))
508
+
509
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
510
+ self.ups.apply(init_weights)
511
+
512
+ if gin_channels != 0:
513
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
514
+
515
+ def forward(self, x, g=None):
516
+ x = self.conv_pre(x)
517
+ if g is not None:
518
+ x = x + self.cond(g)
519
+
520
+ for i in range(self.num_upsamples):
521
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
522
+ x = self.ups[i](x)
523
+ xs = None
524
+ for j in range(self.num_kernels):
525
+ if xs is None:
526
+ xs = self.resblocks[i * self.num_kernels + j](x)
527
+ else:
528
+ xs += self.resblocks[i * self.num_kernels + j](x)
529
+ x = xs / self.num_kernels
530
+ x = F.leaky_relu(x)
531
+ x = self.conv_post(x)
532
+ x = torch.tanh(x)
533
+
534
+ return x
535
+
536
+ def remove_weight_norm(self):
537
+ print("Removing weight norm...")
538
+ for layer in self.ups:
539
+ remove_weight_norm(layer)
540
+ for layer in self.resblocks:
541
+ layer.remove_weight_norm()
542
+
543
+
544
+ class DiscriminatorP(torch.nn.Module):
545
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
546
+ super(DiscriminatorP, self).__init__()
547
+ self.period = period
548
+ self.use_spectral_norm = use_spectral_norm
549
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
550
+ self.convs = nn.ModuleList(
551
+ [
552
+ norm_f(
553
+ Conv2d(
554
+ 1,
555
+ 32,
556
+ (kernel_size, 1),
557
+ (stride, 1),
558
+ padding=(get_padding(kernel_size, 1), 0),
559
+ )
560
+ ),
561
+ norm_f(
562
+ Conv2d(
563
+ 32,
564
+ 128,
565
+ (kernel_size, 1),
566
+ (stride, 1),
567
+ padding=(get_padding(kernel_size, 1), 0),
568
+ )
569
+ ),
570
+ norm_f(
571
+ Conv2d(
572
+ 128,
573
+ 512,
574
+ (kernel_size, 1),
575
+ (stride, 1),
576
+ padding=(get_padding(kernel_size, 1), 0),
577
+ )
578
+ ),
579
+ norm_f(
580
+ Conv2d(
581
+ 512,
582
+ 1024,
583
+ (kernel_size, 1),
584
+ (stride, 1),
585
+ padding=(get_padding(kernel_size, 1), 0),
586
+ )
587
+ ),
588
+ norm_f(
589
+ Conv2d(
590
+ 1024,
591
+ 1024,
592
+ (kernel_size, 1),
593
+ 1,
594
+ padding=(get_padding(kernel_size, 1), 0),
595
+ )
596
+ ),
597
+ ]
598
+ )
599
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
600
+
601
+ def forward(self, x):
602
+ fmap = []
603
+
604
+ # 1d to 2d
605
+ b, c, t = x.shape
606
+ if t % self.period != 0: # pad first
607
+ n_pad = self.period - (t % self.period)
608
+ x = F.pad(x, (0, n_pad), "reflect")
609
+ t = t + n_pad
610
+ x = x.view(b, c, t // self.period, self.period)
611
+
612
+ for layer in self.convs:
613
+ x = layer(x)
614
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
615
+ fmap.append(x)
616
+ x = self.conv_post(x)
617
+ fmap.append(x)
618
+ x = torch.flatten(x, 1, -1)
619
+
620
+ return x, fmap
621
+
622
+
623
+ class DiscriminatorS(torch.nn.Module):
624
+ def __init__(self, use_spectral_norm=False):
625
+ super(DiscriminatorS, self).__init__()
626
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
627
+ self.convs = nn.ModuleList(
628
+ [
629
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
630
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
631
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
632
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
633
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
634
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
635
+ ]
636
+ )
637
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
638
+
639
+ def forward(self, x):
640
+ fmap = []
641
+
642
+ for layer in self.convs:
643
+ x = layer(x)
644
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
645
+ fmap.append(x)
646
+ x = self.conv_post(x)
647
+ fmap.append(x)
648
+ x = torch.flatten(x, 1, -1)
649
+
650
+ return x, fmap
651
+
652
+
653
+ class MultiPeriodDiscriminator(torch.nn.Module):
654
+ def __init__(self, use_spectral_norm=False):
655
+ super(MultiPeriodDiscriminator, self).__init__()
656
+ periods = [2, 3, 5, 7, 11]
657
+
658
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
659
+ discs = discs + [
660
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
661
+ ]
662
+ self.discriminators = nn.ModuleList(discs)
663
+
664
+ def forward(self, y, y_hat):
665
+ y_d_rs = []
666
+ y_d_gs = []
667
+ fmap_rs = []
668
+ fmap_gs = []
669
+ for i, d in enumerate(self.discriminators):
670
+ y_d_r, fmap_r = d(y)
671
+ y_d_g, fmap_g = d(y_hat)
672
+ y_d_rs.append(y_d_r)
673
+ y_d_gs.append(y_d_g)
674
+ fmap_rs.append(fmap_r)
675
+ fmap_gs.append(fmap_g)
676
+
677
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
678
+
679
+
680
+ class ReferenceEncoder(nn.Module):
681
+ """
682
+ inputs --- [N, Ty/r, n_mels*r] mels
683
+ outputs --- [N, ref_enc_gru_size]
684
+ """
685
+
686
+ def __init__(self, spec_channels, gin_channels=0):
687
+ super().__init__()
688
+ self.spec_channels = spec_channels
689
+ ref_enc_filters = [32, 32, 64, 64, 128, 128]
690
+ K = len(ref_enc_filters)
691
+ filters = [1] + ref_enc_filters
692
+ convs = [
693
+ weight_norm(
694
+ nn.Conv2d(
695
+ in_channels=filters[i],
696
+ out_channels=filters[i + 1],
697
+ kernel_size=(3, 3),
698
+ stride=(2, 2),
699
+ padding=(1, 1),
700
+ )
701
+ )
702
+ for i in range(K)
703
+ ]
704
+ self.convs = nn.ModuleList(convs)
705
+ # self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)]) # noqa: E501
706
+
707
+ out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
708
+ self.gru = nn.GRU(
709
+ input_size=ref_enc_filters[-1] * out_channels,
710
+ hidden_size=256 // 2,
711
+ batch_first=True,
712
+ )
713
+ self.proj = nn.Linear(128, gin_channels)
714
+
715
+ def forward(self, inputs, mask=None):
716
+ N = inputs.size(0)
717
+ out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
718
+ for conv in self.convs:
719
+ out = conv(out)
720
+ # out = wn(out)
721
+ out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
722
+
723
+ out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
724
+ T = out.size(1)
725
+ N = out.size(0)
726
+ out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
727
+
728
+ self.gru.flatten_parameters()
729
+ memory, out = self.gru(out) # out --- [1, N, 128]
730
+
731
+ return self.proj(out.squeeze(0))
732
+
733
+ def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
734
+ for i in range(n_convs):
735
+ L = (L - kernel_size + 2 * pad) // stride + 1
736
+ return L
737
+
738
+
739
+ class SynthesizerTrn(nn.Module):
740
+ """
741
+ Synthesizer for Training
742
+ """
743
+
744
+ def __init__(
745
+ self,
746
+ n_vocab,
747
+ spec_channels,
748
+ segment_size,
749
+ inter_channels,
750
+ hidden_channels,
751
+ filter_channels,
752
+ n_heads,
753
+ n_layers,
754
+ kernel_size,
755
+ p_dropout,
756
+ resblock,
757
+ resblock_kernel_sizes,
758
+ resblock_dilation_sizes,
759
+ upsample_rates,
760
+ upsample_initial_channel,
761
+ upsample_kernel_sizes,
762
+ n_speakers=256,
763
+ gin_channels=256,
764
+ use_sdp=True,
765
+ n_flow_layer=4,
766
+ n_layers_trans_flow=6,
767
+ flow_share_parameter=False,
768
+ use_transformer_flow=True,
769
+ **kwargs
770
+ ):
771
+ super().__init__()
772
+ self.n_vocab = n_vocab
773
+ self.spec_channels = spec_channels
774
+ self.inter_channels = inter_channels
775
+ self.hidden_channels = hidden_channels
776
+ self.filter_channels = filter_channels
777
+ self.n_heads = n_heads
778
+ self.n_layers = n_layers
779
+ self.kernel_size = kernel_size
780
+ self.p_dropout = p_dropout
781
+ self.resblock = resblock
782
+ self.resblock_kernel_sizes = resblock_kernel_sizes
783
+ self.resblock_dilation_sizes = resblock_dilation_sizes
784
+ self.upsample_rates = upsample_rates
785
+ self.upsample_initial_channel = upsample_initial_channel
786
+ self.upsample_kernel_sizes = upsample_kernel_sizes
787
+ self.segment_size = segment_size
788
+ self.n_speakers = n_speakers
789
+ self.gin_channels = gin_channels
790
+ self.n_layers_trans_flow = n_layers_trans_flow
791
+ self.use_spk_conditioned_encoder = kwargs.get(
792
+ "use_spk_conditioned_encoder", True
793
+ )
794
+ self.use_sdp = use_sdp
795
+ self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False)
796
+ self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01)
797
+ self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6)
798
+ self.current_mas_noise_scale = self.mas_noise_scale_initial
799
+ if self.use_spk_conditioned_encoder and gin_channels > 0:
800
+ self.enc_gin_channels = gin_channels
801
+ self.enc_p = TextEncoder(
802
+ n_vocab,
803
+ inter_channels,
804
+ hidden_channels,
805
+ filter_channels,
806
+ n_heads,
807
+ n_layers,
808
+ kernel_size,
809
+ p_dropout,
810
+ gin_channels=self.enc_gin_channels,
811
+ )
812
+ self.dec = Generator(
813
+ inter_channels,
814
+ resblock,
815
+ resblock_kernel_sizes,
816
+ resblock_dilation_sizes,
817
+ upsample_rates,
818
+ upsample_initial_channel,
819
+ upsample_kernel_sizes,
820
+ gin_channels=gin_channels,
821
+ )
822
+ self.enc_q = PosteriorEncoder(
823
+ spec_channels,
824
+ inter_channels,
825
+ hidden_channels,
826
+ 5,
827
+ 1,
828
+ 16,
829
+ gin_channels=gin_channels,
830
+ )
831
+ if use_transformer_flow:
832
+ self.flow = TransformerCouplingBlock(
833
+ inter_channels,
834
+ hidden_channels,
835
+ filter_channels,
836
+ n_heads,
837
+ n_layers_trans_flow,
838
+ 5,
839
+ p_dropout,
840
+ n_flow_layer,
841
+ gin_channels=gin_channels,
842
+ share_parameter=flow_share_parameter,
843
+ )
844
+ else:
845
+ self.flow = ResidualCouplingBlock(
846
+ inter_channels,
847
+ hidden_channels,
848
+ 5,
849
+ 1,
850
+ n_flow_layer,
851
+ gin_channels=gin_channels,
852
+ )
853
+ self.sdp = StochasticDurationPredictor(
854
+ hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels
855
+ )
856
+ self.dp = DurationPredictor(
857
+ hidden_channels, 256, 3, 0.5, gin_channels=gin_channels
858
+ )
859
+
860
+ if n_speakers > 1:
861
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
862
+ else:
863
+ self.ref_enc = ReferenceEncoder(spec_channels, gin_channels)
864
+
865
+ def forward(self, x, x_lengths, y, y_lengths, sid, tone, language, bert, ja_bert):
866
+ if self.n_speakers > 0:
867
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
868
+ else:
869
+ g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
870
+ x, m_p, logs_p, x_mask = self.enc_p(
871
+ x, x_lengths, tone, language, bert, ja_bert, g=g
872
+ )
873
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
874
+ z_p = self.flow(z, y_mask, g=g)
875
+
876
+ with torch.no_grad():
877
+ # negative cross-entropy
878
+ s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
879
+ neg_cent1 = torch.sum(
880
+ -0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True
881
+ ) # [b, 1, t_s]
882
+ neg_cent2 = torch.matmul(
883
+ -0.5 * (z_p**2).transpose(1, 2), s_p_sq_r
884
+ ) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
885
+ neg_cent3 = torch.matmul(
886
+ z_p.transpose(1, 2), (m_p * s_p_sq_r)
887
+ ) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
888
+ neg_cent4 = torch.sum(
889
+ -0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True
890
+ ) # [b, 1, t_s]
891
+ neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
892
+ if self.use_noise_scaled_mas:
893
+ epsilon = (
894
+ torch.std(neg_cent)
895
+ * torch.randn_like(neg_cent)
896
+ * self.current_mas_noise_scale
897
+ )
898
+ neg_cent = neg_cent + epsilon
899
+
900
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
901
+ attn = (
902
+ monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1))
903
+ .unsqueeze(1)
904
+ .detach()
905
+ )
906
+
907
+ w = attn.sum(2)
908
+
909
+ l_length_sdp = self.sdp(x, x_mask, w, g=g)
910
+ l_length_sdp = l_length_sdp / torch.sum(x_mask)
911
+
912
+ logw_ = torch.log(w + 1e-6) * x_mask
913
+ logw = self.dp(x, x_mask, g=g)
914
+ l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(
915
+ x_mask
916
+ ) # for averaging
917
+
918
+ l_length = l_length_dp + l_length_sdp
919
+
920
+ # expand prior
921
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
922
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
923
+
924
+ z_slice, ids_slice = commons.rand_slice_segments(
925
+ z, y_lengths, self.segment_size
926
+ )
927
+ o = self.dec(z_slice, g=g)
928
+ return (
929
+ o,
930
+ l_length,
931
+ attn,
932
+ ids_slice,
933
+ x_mask,
934
+ y_mask,
935
+ (z, z_p, m_p, logs_p, m_q, logs_q),
936
+ (x, logw, logw_),
937
+ )
938
+
939
+ def infer(
940
+ self,
941
+ x,
942
+ x_lengths,
943
+ sid,
944
+ tone,
945
+ language,
946
+ bert,
947
+ ja_bert,
948
+ noise_scale=0.667,
949
+ length_scale=1,
950
+ noise_scale_w=0.8,
951
+ max_len=None,
952
+ sdp_ratio=0,
953
+ y=None,
954
+ ):
955
+ # x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert)
956
+ # g = self.gst(y)
957
+ if self.n_speakers > 0:
958
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
959
+ else:
960
+ g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
961
+ x, m_p, logs_p, x_mask = self.enc_p(
962
+ x, x_lengths, tone, language, bert, ja_bert, g=g
963
+ )
964
+ logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (
965
+ sdp_ratio
966
+ ) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio)
967
+ w = torch.exp(logw) * x_mask * length_scale
968
+ w_ceil = torch.ceil(w)
969
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
970
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(
971
+ x_mask.dtype
972
+ )
973
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
974
+ attn = commons.generate_path(w_ceil, attn_mask)
975
+
976
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
977
+ 1, 2
978
+ ) # [b, t', t], [b, t, d] -> [b, d, t']
979
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(
980
+ 1, 2
981
+ ) # [b, t', t], [b, t, d] -> [b, d, t']
982
+
983
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
984
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
985
+ o = self.dec((z * y_mask)[:, :, :max_len], g=g)
986
+ return o, attn, y_mask, (z, z_p, m_p, logs_p)
modules.py ADDED
@@ -0,0 +1,597 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+
6
+ from torch.nn import Conv1d
7
+ from torch.nn.utils import weight_norm, remove_weight_norm
8
+
9
+ import commons
10
+ from commons import init_weights, get_padding
11
+ from transforms import piecewise_rational_quadratic_transform
12
+ from attentions import Encoder
13
+
14
+ LRELU_SLOPE = 0.1
15
+
16
+
17
+ class LayerNorm(nn.Module):
18
+ def __init__(self, channels, eps=1e-5):
19
+ super().__init__()
20
+ self.channels = channels
21
+ self.eps = eps
22
+
23
+ self.gamma = nn.Parameter(torch.ones(channels))
24
+ self.beta = nn.Parameter(torch.zeros(channels))
25
+
26
+ def forward(self, x):
27
+ x = x.transpose(1, -1)
28
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
29
+ return x.transpose(1, -1)
30
+
31
+
32
+ class ConvReluNorm(nn.Module):
33
+ def __init__(
34
+ self,
35
+ in_channels,
36
+ hidden_channels,
37
+ out_channels,
38
+ kernel_size,
39
+ n_layers,
40
+ p_dropout,
41
+ ):
42
+ super().__init__()
43
+ self.in_channels = in_channels
44
+ self.hidden_channels = hidden_channels
45
+ self.out_channels = out_channels
46
+ self.kernel_size = kernel_size
47
+ self.n_layers = n_layers
48
+ self.p_dropout = p_dropout
49
+ assert n_layers > 1, "Number of layers should be larger than 0."
50
+
51
+ self.conv_layers = nn.ModuleList()
52
+ self.norm_layers = nn.ModuleList()
53
+ self.conv_layers.append(
54
+ nn.Conv1d(
55
+ in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
56
+ )
57
+ )
58
+ self.norm_layers.append(LayerNorm(hidden_channels))
59
+ self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
60
+ for _ in range(n_layers - 1):
61
+ self.conv_layers.append(
62
+ nn.Conv1d(
63
+ hidden_channels,
64
+ hidden_channels,
65
+ kernel_size,
66
+ padding=kernel_size // 2,
67
+ )
68
+ )
69
+ self.norm_layers.append(LayerNorm(hidden_channels))
70
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
71
+ self.proj.weight.data.zero_()
72
+ self.proj.bias.data.zero_()
73
+
74
+ def forward(self, x, x_mask):
75
+ x_org = x
76
+ for i in range(self.n_layers):
77
+ x = self.conv_layers[i](x * x_mask)
78
+ x = self.norm_layers[i](x)
79
+ x = self.relu_drop(x)
80
+ x = x_org + self.proj(x)
81
+ return x * x_mask
82
+
83
+
84
+ class DDSConv(nn.Module):
85
+ """
86
+ Dialted and Depth-Separable Convolution
87
+ """
88
+
89
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
90
+ super().__init__()
91
+ self.channels = channels
92
+ self.kernel_size = kernel_size
93
+ self.n_layers = n_layers
94
+ self.p_dropout = p_dropout
95
+
96
+ self.drop = nn.Dropout(p_dropout)
97
+ self.convs_sep = nn.ModuleList()
98
+ self.convs_1x1 = nn.ModuleList()
99
+ self.norms_1 = nn.ModuleList()
100
+ self.norms_2 = nn.ModuleList()
101
+ for i in range(n_layers):
102
+ dilation = kernel_size**i
103
+ padding = (kernel_size * dilation - dilation) // 2
104
+ self.convs_sep.append(
105
+ nn.Conv1d(
106
+ channels,
107
+ channels,
108
+ kernel_size,
109
+ groups=channels,
110
+ dilation=dilation,
111
+ padding=padding,
112
+ )
113
+ )
114
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
115
+ self.norms_1.append(LayerNorm(channels))
116
+ self.norms_2.append(LayerNorm(channels))
117
+
118
+ def forward(self, x, x_mask, g=None):
119
+ if g is not None:
120
+ x = x + g
121
+ for i in range(self.n_layers):
122
+ y = self.convs_sep[i](x * x_mask)
123
+ y = self.norms_1[i](y)
124
+ y = F.gelu(y)
125
+ y = self.convs_1x1[i](y)
126
+ y = self.norms_2[i](y)
127
+ y = F.gelu(y)
128
+ y = self.drop(y)
129
+ x = x + y
130
+ return x * x_mask
131
+
132
+
133
+ class WN(torch.nn.Module):
134
+ def __init__(
135
+ self,
136
+ hidden_channels,
137
+ kernel_size,
138
+ dilation_rate,
139
+ n_layers,
140
+ gin_channels=0,
141
+ p_dropout=0,
142
+ ):
143
+ super(WN, self).__init__()
144
+ assert kernel_size % 2 == 1
145
+ self.hidden_channels = hidden_channels
146
+ self.kernel_size = (kernel_size,)
147
+ self.dilation_rate = dilation_rate
148
+ self.n_layers = n_layers
149
+ self.gin_channels = gin_channels
150
+ self.p_dropout = p_dropout
151
+
152
+ self.in_layers = torch.nn.ModuleList()
153
+ self.res_skip_layers = torch.nn.ModuleList()
154
+ self.drop = nn.Dropout(p_dropout)
155
+
156
+ if gin_channels != 0:
157
+ cond_layer = torch.nn.Conv1d(
158
+ gin_channels, 2 * hidden_channels * n_layers, 1
159
+ )
160
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
161
+
162
+ for i in range(n_layers):
163
+ dilation = dilation_rate**i
164
+ padding = int((kernel_size * dilation - dilation) / 2)
165
+ in_layer = torch.nn.Conv1d(
166
+ hidden_channels,
167
+ 2 * hidden_channels,
168
+ kernel_size,
169
+ dilation=dilation,
170
+ padding=padding,
171
+ )
172
+ in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
173
+ self.in_layers.append(in_layer)
174
+
175
+ # last one is not necessary
176
+ if i < n_layers - 1:
177
+ res_skip_channels = 2 * hidden_channels
178
+ else:
179
+ res_skip_channels = hidden_channels
180
+
181
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
182
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
183
+ self.res_skip_layers.append(res_skip_layer)
184
+
185
+ def forward(self, x, x_mask, g=None, **kwargs):
186
+ output = torch.zeros_like(x)
187
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
188
+
189
+ if g is not None:
190
+ g = self.cond_layer(g)
191
+
192
+ for i in range(self.n_layers):
193
+ x_in = self.in_layers[i](x)
194
+ if g is not None:
195
+ cond_offset = i * 2 * self.hidden_channels
196
+ g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
197
+ else:
198
+ g_l = torch.zeros_like(x_in)
199
+
200
+ acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
201
+ acts = self.drop(acts)
202
+
203
+ res_skip_acts = self.res_skip_layers[i](acts)
204
+ if i < self.n_layers - 1:
205
+ res_acts = res_skip_acts[:, : self.hidden_channels, :]
206
+ x = (x + res_acts) * x_mask
207
+ output = output + res_skip_acts[:, self.hidden_channels :, :]
208
+ else:
209
+ output = output + res_skip_acts
210
+ return output * x_mask
211
+
212
+ def remove_weight_norm(self):
213
+ if self.gin_channels != 0:
214
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
215
+ for l in self.in_layers:
216
+ torch.nn.utils.remove_weight_norm(l)
217
+ for l in self.res_skip_layers:
218
+ torch.nn.utils.remove_weight_norm(l)
219
+
220
+
221
+ class ResBlock1(torch.nn.Module):
222
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
223
+ super(ResBlock1, self).__init__()
224
+ self.convs1 = nn.ModuleList(
225
+ [
226
+ weight_norm(
227
+ Conv1d(
228
+ channels,
229
+ channels,
230
+ kernel_size,
231
+ 1,
232
+ dilation=dilation[0],
233
+ padding=get_padding(kernel_size, dilation[0]),
234
+ )
235
+ ),
236
+ weight_norm(
237
+ Conv1d(
238
+ channels,
239
+ channels,
240
+ kernel_size,
241
+ 1,
242
+ dilation=dilation[1],
243
+ padding=get_padding(kernel_size, dilation[1]),
244
+ )
245
+ ),
246
+ weight_norm(
247
+ Conv1d(
248
+ channels,
249
+ channels,
250
+ kernel_size,
251
+ 1,
252
+ dilation=dilation[2],
253
+ padding=get_padding(kernel_size, dilation[2]),
254
+ )
255
+ ),
256
+ ]
257
+ )
258
+ self.convs1.apply(init_weights)
259
+
260
+ self.convs2 = nn.ModuleList(
261
+ [
262
+ weight_norm(
263
+ Conv1d(
264
+ channels,
265
+ channels,
266
+ kernel_size,
267
+ 1,
268
+ dilation=1,
269
+ padding=get_padding(kernel_size, 1),
270
+ )
271
+ ),
272
+ weight_norm(
273
+ Conv1d(
274
+ channels,
275
+ channels,
276
+ kernel_size,
277
+ 1,
278
+ dilation=1,
279
+ padding=get_padding(kernel_size, 1),
280
+ )
281
+ ),
282
+ weight_norm(
283
+ Conv1d(
284
+ channels,
285
+ channels,
286
+ kernel_size,
287
+ 1,
288
+ dilation=1,
289
+ padding=get_padding(kernel_size, 1),
290
+ )
291
+ ),
292
+ ]
293
+ )
294
+ self.convs2.apply(init_weights)
295
+
296
+ def forward(self, x, x_mask=None):
297
+ for c1, c2 in zip(self.convs1, self.convs2):
298
+ xt = F.leaky_relu(x, LRELU_SLOPE)
299
+ if x_mask is not None:
300
+ xt = xt * x_mask
301
+ xt = c1(xt)
302
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
303
+ if x_mask is not None:
304
+ xt = xt * x_mask
305
+ xt = c2(xt)
306
+ x = xt + x
307
+ if x_mask is not None:
308
+ x = x * x_mask
309
+ return x
310
+
311
+ def remove_weight_norm(self):
312
+ for l in self.convs1:
313
+ remove_weight_norm(l)
314
+ for l in self.convs2:
315
+ remove_weight_norm(l)
316
+
317
+
318
+ class ResBlock2(torch.nn.Module):
319
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
320
+ super(ResBlock2, self).__init__()
321
+ self.convs = nn.ModuleList(
322
+ [
323
+ weight_norm(
324
+ Conv1d(
325
+ channels,
326
+ channels,
327
+ kernel_size,
328
+ 1,
329
+ dilation=dilation[0],
330
+ padding=get_padding(kernel_size, dilation[0]),
331
+ )
332
+ ),
333
+ weight_norm(
334
+ Conv1d(
335
+ channels,
336
+ channels,
337
+ kernel_size,
338
+ 1,
339
+ dilation=dilation[1],
340
+ padding=get_padding(kernel_size, dilation[1]),
341
+ )
342
+ ),
343
+ ]
344
+ )
345
+ self.convs.apply(init_weights)
346
+
347
+ def forward(self, x, x_mask=None):
348
+ for c in self.convs:
349
+ xt = F.leaky_relu(x, LRELU_SLOPE)
350
+ if x_mask is not None:
351
+ xt = xt * x_mask
352
+ xt = c(xt)
353
+ x = xt + x
354
+ if x_mask is not None:
355
+ x = x * x_mask
356
+ return x
357
+
358
+ def remove_weight_norm(self):
359
+ for l in self.convs:
360
+ remove_weight_norm(l)
361
+
362
+
363
+ class Log(nn.Module):
364
+ def forward(self, x, x_mask, reverse=False, **kwargs):
365
+ if not reverse:
366
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
367
+ logdet = torch.sum(-y, [1, 2])
368
+ return y, logdet
369
+ else:
370
+ x = torch.exp(x) * x_mask
371
+ return x
372
+
373
+
374
+ class Flip(nn.Module):
375
+ def forward(self, x, *args, reverse=False, **kwargs):
376
+ x = torch.flip(x, [1])
377
+ if not reverse:
378
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
379
+ return x, logdet
380
+ else:
381
+ return x
382
+
383
+
384
+ class ElementwiseAffine(nn.Module):
385
+ def __init__(self, channels):
386
+ super().__init__()
387
+ self.channels = channels
388
+ self.m = nn.Parameter(torch.zeros(channels, 1))
389
+ self.logs = nn.Parameter(torch.zeros(channels, 1))
390
+
391
+ def forward(self, x, x_mask, reverse=False, **kwargs):
392
+ if not reverse:
393
+ y = self.m + torch.exp(self.logs) * x
394
+ y = y * x_mask
395
+ logdet = torch.sum(self.logs * x_mask, [1, 2])
396
+ return y, logdet
397
+ else:
398
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
399
+ return x
400
+
401
+
402
+ class ResidualCouplingLayer(nn.Module):
403
+ def __init__(
404
+ self,
405
+ channels,
406
+ hidden_channels,
407
+ kernel_size,
408
+ dilation_rate,
409
+ n_layers,
410
+ p_dropout=0,
411
+ gin_channels=0,
412
+ mean_only=False,
413
+ ):
414
+ assert channels % 2 == 0, "channels should be divisible by 2"
415
+ super().__init__()
416
+ self.channels = channels
417
+ self.hidden_channels = hidden_channels
418
+ self.kernel_size = kernel_size
419
+ self.dilation_rate = dilation_rate
420
+ self.n_layers = n_layers
421
+ self.half_channels = channels // 2
422
+ self.mean_only = mean_only
423
+
424
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
425
+ self.enc = WN(
426
+ hidden_channels,
427
+ kernel_size,
428
+ dilation_rate,
429
+ n_layers,
430
+ p_dropout=p_dropout,
431
+ gin_channels=gin_channels,
432
+ )
433
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
434
+ self.post.weight.data.zero_()
435
+ self.post.bias.data.zero_()
436
+
437
+ def forward(self, x, x_mask, g=None, reverse=False):
438
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
439
+ h = self.pre(x0) * x_mask
440
+ h = self.enc(h, x_mask, g=g)
441
+ stats = self.post(h) * x_mask
442
+ if not self.mean_only:
443
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
444
+ else:
445
+ m = stats
446
+ logs = torch.zeros_like(m)
447
+
448
+ if not reverse:
449
+ x1 = m + x1 * torch.exp(logs) * x_mask
450
+ x = torch.cat([x0, x1], 1)
451
+ logdet = torch.sum(logs, [1, 2])
452
+ return x, logdet
453
+ else:
454
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
455
+ x = torch.cat([x0, x1], 1)
456
+ return x
457
+
458
+
459
+ class ConvFlow(nn.Module):
460
+ def __init__(
461
+ self,
462
+ in_channels,
463
+ filter_channels,
464
+ kernel_size,
465
+ n_layers,
466
+ num_bins=10,
467
+ tail_bound=5.0,
468
+ ):
469
+ super().__init__()
470
+ self.in_channels = in_channels
471
+ self.filter_channels = filter_channels
472
+ self.kernel_size = kernel_size
473
+ self.n_layers = n_layers
474
+ self.num_bins = num_bins
475
+ self.tail_bound = tail_bound
476
+ self.half_channels = in_channels // 2
477
+
478
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
479
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
480
+ self.proj = nn.Conv1d(
481
+ filter_channels, self.half_channels * (num_bins * 3 - 1), 1
482
+ )
483
+ self.proj.weight.data.zero_()
484
+ self.proj.bias.data.zero_()
485
+
486
+ def forward(self, x, x_mask, g=None, reverse=False):
487
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
488
+ h = self.pre(x0)
489
+ h = self.convs(h, x_mask, g=g)
490
+ h = self.proj(h) * x_mask
491
+
492
+ b, c, t = x0.shape
493
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
494
+
495
+ unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
496
+ unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
497
+ self.filter_channels
498
+ )
499
+ unnormalized_derivatives = h[..., 2 * self.num_bins :]
500
+
501
+ x1, logabsdet = piecewise_rational_quadratic_transform(
502
+ x1,
503
+ unnormalized_widths,
504
+ unnormalized_heights,
505
+ unnormalized_derivatives,
506
+ inverse=reverse,
507
+ tails="linear",
508
+ tail_bound=self.tail_bound,
509
+ )
510
+
511
+ x = torch.cat([x0, x1], 1) * x_mask
512
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
513
+ if not reverse:
514
+ return x, logdet
515
+ else:
516
+ return x
517
+
518
+
519
+ class TransformerCouplingLayer(nn.Module):
520
+ def __init__(
521
+ self,
522
+ channels,
523
+ hidden_channels,
524
+ kernel_size,
525
+ n_layers,
526
+ n_heads,
527
+ p_dropout=0,
528
+ filter_channels=0,
529
+ mean_only=False,
530
+ wn_sharing_parameter=None,
531
+ gin_channels=0,
532
+ ):
533
+ assert channels % 2 == 0, "channels should be divisible by 2"
534
+ super().__init__()
535
+ self.channels = channels
536
+ self.hidden_channels = hidden_channels
537
+ self.kernel_size = kernel_size
538
+ self.n_layers = n_layers
539
+ self.half_channels = channels // 2
540
+ self.mean_only = mean_only
541
+
542
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
543
+ self.enc = (
544
+ Encoder(
545
+ hidden_channels,
546
+ filter_channels,
547
+ n_heads,
548
+ n_layers,
549
+ kernel_size,
550
+ p_dropout,
551
+ isflow=True,
552
+ gin_channels=gin_channels,
553
+ )
554
+ if wn_sharing_parameter is None
555
+ else wn_sharing_parameter
556
+ )
557
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
558
+ self.post.weight.data.zero_()
559
+ self.post.bias.data.zero_()
560
+
561
+ def forward(self, x, x_mask, g=None, reverse=False):
562
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
563
+ h = self.pre(x0) * x_mask
564
+ h = self.enc(h, x_mask, g=g)
565
+ stats = self.post(h) * x_mask
566
+ if not self.mean_only:
567
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
568
+ else:
569
+ m = stats
570
+ logs = torch.zeros_like(m)
571
+
572
+ if not reverse:
573
+ x1 = m + x1 * torch.exp(logs) * x_mask
574
+ x = torch.cat([x0, x1], 1)
575
+ logdet = torch.sum(logs, [1, 2])
576
+ return x, logdet
577
+ else:
578
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
579
+ x = torch.cat([x0, x1], 1)
580
+ return x
581
+
582
+ x1, logabsdet = piecewise_rational_quadratic_transform(
583
+ x1,
584
+ unnormalized_widths,
585
+ unnormalized_heights,
586
+ unnormalized_derivatives,
587
+ inverse=reverse,
588
+ tails="linear",
589
+ tail_bound=self.tail_bound,
590
+ )
591
+
592
+ x = torch.cat([x0, x1], 1) * x_mask
593
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
594
+ if not reverse:
595
+ return x, logdet
596
+ else:
597
+ return x
monotonic_align/__init__.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy import zeros, int32, float32
2
+ from torch import from_numpy
3
+
4
+ from .core import maximum_path_jit
5
+
6
+
7
+ def maximum_path(neg_cent, mask):
8
+ device = neg_cent.device
9
+ dtype = neg_cent.dtype
10
+ neg_cent = neg_cent.data.cpu().numpy().astype(float32)
11
+ path = zeros(neg_cent.shape, dtype=int32)
12
+
13
+ t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(int32)
14
+ t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(int32)
15
+ maximum_path_jit(path, neg_cent, t_t_max, t_s_max)
16
+ return from_numpy(path).to(device=device, dtype=dtype)
monotonic_align/core.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numba
2
+
3
+
4
+ @numba.jit(
5
+ numba.void(
6
+ numba.int32[:, :, ::1],
7
+ numba.float32[:, :, ::1],
8
+ numba.int32[::1],
9
+ numba.int32[::1],
10
+ ),
11
+ nopython=True,
12
+ nogil=True,
13
+ )
14
+ def maximum_path_jit(paths, values, t_ys, t_xs):
15
+ b = paths.shape[0]
16
+ max_neg_val = -1e9
17
+ for i in range(int(b)):
18
+ path = paths[i]
19
+ value = values[i]
20
+ t_y = t_ys[i]
21
+ t_x = t_xs[i]
22
+
23
+ v_prev = v_cur = 0.0
24
+ index = t_x - 1
25
+
26
+ for y in range(t_y):
27
+ for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
28
+ if x == y:
29
+ v_cur = max_neg_val
30
+ else:
31
+ v_cur = value[y - 1, x]
32
+ if x == 0:
33
+ if y == 0:
34
+ v_prev = 0.0
35
+ else:
36
+ v_prev = max_neg_val
37
+ else:
38
+ v_prev = value[y - 1, x - 1]
39
+ value[y, x] += max(v_prev, v_cur)
40
+
41
+ for y in range(t_y - 1, -1, -1):
42
+ path[y, index] = 1
43
+ if index != 0 and (
44
+ index == y or value[y - 1, index] < value[y - 1, index - 1]
45
+ ):
46
+ index = index - 1
pretrained_models/info.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "shorekeeper": {
3
+ "enable": true,
4
+ "name": "shorekeeper",
5
+ "title": "Honkai: Star Rail-カフカ",
6
+ "example": "嗅ぎます?この子は、特に香りもいいんです。艶があるっていうのかなぁ。とにかく、絶対に嗅いだ方がいい。ほら、どうです?"
7
+ }
8
+ }
requirements.txt ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ librosa==0.9.1
2
+ matplotlib
3
+ numpy
4
+ numba
5
+ phonemizer
6
+ scipy
7
+ tensorboard
8
+ torch
9
+ torchvision
10
+ Unidecode
11
+ amfm_decompy
12
+ jieba
13
+ transformers
14
+ pypinyin
15
+ cn2an
16
+ gradio
17
+ av
18
+ mecab-python3
19
+ loguru
20
+ unidic-lite
21
+ cmudict
22
+ fugashi
23
+ num2words
text/__init__.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from text.symbols import *
2
+
3
+ _symbol_to_id = {s: i for i, s in enumerate(symbols)}
4
+
5
+
6
+ def cleaned_text_to_sequence(cleaned_text, tones, language):
7
+ """Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
8
+ Args:
9
+ text: string to convert to a sequence
10
+ Returns:
11
+ List of integers corresponding to the symbols in the text
12
+ """
13
+ phones = [_symbol_to_id[symbol] for symbol in cleaned_text]
14
+ tone_start = language_tone_start_map[language]
15
+ tones = [i + tone_start for i in tones]
16
+ lang_id = language_id_map[language]
17
+ lang_ids = [lang_id for i in phones]
18
+ return phones, tones, lang_ids
19
+
20
+
21
+ def get_bert(norm_text, word2ph, language, device):
22
+ from .japanese_bert import get_bert_feature as jp_bert
23
+
24
+ lang_bert_func_map = {"JP": jp_bert}
25
+ bert = lang_bert_func_map[language](norm_text, word2ph, device)
26
+ return bert
text/chinese.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+
4
+ import cn2an
5
+ from pypinyin import lazy_pinyin, Style
6
+
7
+ from text.symbols import punctuation
8
+ from text.tone_sandhi import ToneSandhi
9
+
10
+ current_file_path = os.path.dirname(__file__)
11
+ pinyin_to_symbol_map = {
12
+ line.split("\t")[0]: line.strip().split("\t")[1]
13
+ for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines()
14
+ }
15
+
16
+ import jieba.posseg as psg
17
+
18
+
19
+ rep_map = {
20
+ ":": ",",
21
+ ";": ",",
22
+ ",": ",",
23
+ "。": ".",
24
+ "!": "!",
25
+ "?": "?",
26
+ "\n": ".",
27
+ "·": ",",
28
+ "、": ",",
29
+ "...": "…",
30
+ "$": ".",
31
+ "“": "'",
32
+ "”": "'",
33
+ "‘": "'",
34
+ "’": "'",
35
+ "(": "'",
36
+ ")": "'",
37
+ "(": "'",
38
+ ")": "'",
39
+ "《": "'",
40
+ "》": "'",
41
+ "【": "'",
42
+ "】": "'",
43
+ "[": "'",
44
+ "]": "'",
45
+ "—": "-",
46
+ "~": "-",
47
+ "~": "-",
48
+ "「": "'",
49
+ "」": "'",
50
+ }
51
+
52
+ tone_modifier = ToneSandhi()
53
+
54
+
55
+ def replace_punctuation(text):
56
+ text = text.replace("嗯", "恩").replace("呣", "母")
57
+ pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
58
+
59
+ replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
60
+
61
+ replaced_text = re.sub(
62
+ r"[^\u4e00-\u9fa5" + "".join(punctuation) + r"]+", "", replaced_text
63
+ )
64
+
65
+ return replaced_text
66
+
67
+
68
+ def g2p(text):
69
+ pattern = r"(?<=[{0}])\s*".format("".join(punctuation))
70
+ sentences = [i for i in re.split(pattern, text) if i.strip() != ""]
71
+ phones, tones, word2ph = _g2p(sentences)
72
+ assert sum(word2ph) == len(phones)
73
+ assert len(word2ph) == len(text) # Sometimes it will crash,you can add a try-catch.
74
+ phones = ["_"] + phones + ["_"]
75
+ tones = [0] + tones + [0]
76
+ word2ph = [1] + word2ph + [1]
77
+ return phones, tones, word2ph
78
+
79
+
80
+ def _get_initials_finals(word):
81
+ initials = []
82
+ finals = []
83
+ orig_initials = lazy_pinyin(word, neutral_tone_with_five=True, style=Style.INITIALS)
84
+ orig_finals = lazy_pinyin(
85
+ word, neutral_tone_with_five=True, style=Style.FINALS_TONE3
86
+ )
87
+ for c, v in zip(orig_initials, orig_finals):
88
+ initials.append(c)
89
+ finals.append(v)
90
+ return initials, finals
91
+
92
+
93
+ def _g2p(segments):
94
+ phones_list = []
95
+ tones_list = []
96
+ word2ph = []
97
+ for seg in segments:
98
+ # Replace all English words in the sentence
99
+ seg = re.sub("[a-zA-Z]+", "", seg)
100
+ seg_cut = psg.lcut(seg)
101
+ initials = []
102
+ finals = []
103
+ seg_cut = tone_modifier.pre_merge_for_modify(seg_cut)
104
+ for word, pos in seg_cut:
105
+ if pos == "eng":
106
+ continue
107
+ sub_initials, sub_finals = _get_initials_finals(word)
108
+ sub_finals = tone_modifier.modified_tone(word, pos, sub_finals)
109
+ initials.append(sub_initials)
110
+ finals.append(sub_finals)
111
+
112
+ # assert len(sub_initials) == len(sub_finals) == len(word)
113
+ initials = sum(initials, [])
114
+ finals = sum(finals, [])
115
+ #
116
+ for c, v in zip(initials, finals):
117
+ raw_pinyin = c + v
118
+ # NOTE: post process for pypinyin outputs
119
+ # we discriminate i, ii and iii
120
+ if c == v:
121
+ assert c in punctuation
122
+ phone = [c]
123
+ tone = "0"
124
+ word2ph.append(1)
125
+ else:
126
+ v_without_tone = v[:-1]
127
+ tone = v[-1]
128
+
129
+ pinyin = c + v_without_tone
130
+ assert tone in "12345"
131
+
132
+ if c:
133
+ # 多音节
134
+ v_rep_map = {
135
+ "uei": "ui",
136
+ "iou": "iu",
137
+ "uen": "un",
138
+ }
139
+ if v_without_tone in v_rep_map.keys():
140
+ pinyin = c + v_rep_map[v_without_tone]
141
+ else:
142
+ # 单音节
143
+ pinyin_rep_map = {
144
+ "ing": "ying",
145
+ "i": "yi",
146
+ "in": "yin",
147
+ "u": "wu",
148
+ }
149
+ if pinyin in pinyin_rep_map.keys():
150
+ pinyin = pinyin_rep_map[pinyin]
151
+ else:
152
+ single_rep_map = {
153
+ "v": "yu",
154
+ "e": "e",
155
+ "i": "y",
156
+ "u": "w",
157
+ }
158
+ if pinyin[0] in single_rep_map.keys():
159
+ pinyin = single_rep_map[pinyin[0]] + pinyin[1:]
160
+
161
+ assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin)
162
+ phone = pinyin_to_symbol_map[pinyin].split(" ")
163
+ word2ph.append(len(phone))
164
+
165
+ phones_list += phone
166
+ tones_list += [int(tone)] * len(phone)
167
+ return phones_list, tones_list, word2ph
168
+
169
+
170
+ def text_normalize(text):
171
+ numbers = re.findall(r"\d+(?:\.?\d+)?", text)
172
+ for number in numbers:
173
+ text = text.replace(number, cn2an.an2cn(number), 1)
174
+ text = replace_punctuation(text)
175
+ return text
176
+
177
+
178
+ def get_bert_feature(text, word2ph):
179
+ from text import chinese_bert
180
+
181
+ return chinese_bert.get_bert_feature(text, word2ph)
182
+
183
+
184
+ if __name__ == "__main__":
185
+ from text.chinese_bert import get_bert_feature
186
+
187
+ text = "啊!但是《原神》是由,米哈\游自主, [研发]的一款全.新开放世界.冒险游戏"
188
+ text = text_normalize(text)
189
+ print(text)
190
+ phones, tones, word2ph = g2p(text)
191
+ bert = get_bert_feature(text, word2ph)
192
+
193
+ print(phones, tones, word2ph, bert.shape)
194
+
195
+
196
+ # # 示例用法
197
+ # text = "这是一个示例文本:,你好!这是一个测试...."
198
+ # print(g2p_paddle(text)) # 输出: 这是一个示例文本你好这是一个测试
text/chinese_bert.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import sys
3
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
4
+
5
+ tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext-large")
6
+
7
+ models = dict()
8
+
9
+
10
+ def get_bert_feature(text, word2ph, device=None):
11
+ if (
12
+ sys.platform == "darwin"
13
+ and torch.backends.mps.is_available()
14
+ and device == "cpu"
15
+ ):
16
+ device = "mps"
17
+ if not device:
18
+ device = "cuda"
19
+ if device not in models.keys():
20
+ models[device] = AutoModelForMaskedLM.from_pretrained(
21
+ "hfl/chinese-roberta-wwm-ext-large"
22
+ ).to(device)
23
+ with torch.no_grad():
24
+ inputs = tokenizer(text, return_tensors="pt")
25
+ for i in inputs:
26
+ inputs[i] = inputs[i].to(device)
27
+ res = models[device](**inputs, output_hidden_states=True)
28
+ res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
29
+
30
+ assert len(word2ph) == len(text) + 2
31
+ word2phone = word2ph
32
+ phone_level_feature = []
33
+ for i in range(len(word2phone)):
34
+ repeat_feature = res[i].repeat(word2phone[i], 1)
35
+ phone_level_feature.append(repeat_feature)
36
+
37
+ phone_level_feature = torch.cat(phone_level_feature, dim=0)
38
+
39
+ return phone_level_feature.T
40
+
41
+
42
+ if __name__ == "__main__":
43
+ import torch
44
+
45
+ word_level_feature = torch.rand(38, 1024) # 12个词,每个词1024维特征
46
+ word2phone = [
47
+ 1,
48
+ 2,
49
+ 1,
50
+ 2,
51
+ 2,
52
+ 1,
53
+ 2,
54
+ 2,
55
+ 1,
56
+ 2,
57
+ 2,
58
+ 1,
59
+ 2,
60
+ 2,
61
+ 2,
62
+ 2,
63
+ 2,
64
+ 1,
65
+ 1,
66
+ 2,
67
+ 2,
68
+ 1,
69
+ 2,
70
+ 2,
71
+ 2,
72
+ 2,
73
+ 1,
74
+ 2,
75
+ 2,
76
+ 2,
77
+ 2,
78
+ 2,
79
+ 1,
80
+ 2,
81
+ 2,
82
+ 2,
83
+ 2,
84
+ 1,
85
+ ]
86
+
87
+ # 计算总帧数
88
+ total_frames = sum(word2phone)
89
+ print(word_level_feature.shape)
90
+ print(word2phone)
91
+ phone_level_feature = []
92
+ for i in range(len(word2phone)):
93
+ print(word_level_feature[i].shape)
94
+
95
+ # 对每个词重复word2phone[i]次
96
+ repeat_feature = word_level_feature[i].repeat(word2phone[i], 1)
97
+ phone_level_feature.append(repeat_feature)
98
+
99
+ phone_level_feature = torch.cat(phone_level_feature, dim=0)
100
+ print(phone_level_feature.shape) # torch.Size([36, 1024])
text/cleaner.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from text import chinese, japanese, cleaned_text_to_sequence
2
+
3
+
4
+ language_module_map = {"ZH": chinese, "JP": japanese}
5
+
6
+
7
+ def clean_text(text, language):
8
+ language_module = language_module_map[language]
9
+ norm_text = language_module.text_normalize(text)
10
+ phones, tones, word2ph = language_module.g2p(norm_text)
11
+ return norm_text, phones, tones, word2ph
12
+
13
+
14
+ def clean_text_bert(text, language):
15
+ language_module = language_module_map[language]
16
+ norm_text = language_module.text_normalize(text)
17
+ phones, tones, word2ph = language_module.g2p(norm_text)
18
+ bert = language_module.get_bert_feature(norm_text, word2ph)
19
+ return phones, tones, bert
20
+
21
+
22
+ def text_to_sequence(text, language):
23
+ norm_text, phones, tones, word2ph = clean_text(text, language)
24
+ return cleaned_text_to_sequence(phones, tones, language)
25
+
26
+
27
+ if __name__ == "__main__":
28
+ pass
text/cmudict.rep ADDED
The diff for this file is too large to render. See raw diff
 
text/cmudict_cache.pickle ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9b21b20325471934ba92f2e4a5976989e7d920caa32e7a286eacb027d197949
3
+ size 6212655
text/english.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import os
3
+ import re
4
+ from g2p_en import G2p
5
+
6
+ from text import symbols
7
+
8
+ current_file_path = os.path.dirname(__file__)
9
+ CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep")
10
+ CACHE_PATH = os.path.join(current_file_path, "cmudict_cache.pickle")
11
+ _g2p = G2p()
12
+
13
+ arpa = {
14
+ "AH0",
15
+ "S",
16
+ "AH1",
17
+ "EY2",
18
+ "AE2",
19
+ "EH0",
20
+ "OW2",
21
+ "UH0",
22
+ "NG",
23
+ "B",
24
+ "G",
25
+ "AY0",
26
+ "M",
27
+ "AA0",
28
+ "F",
29
+ "AO0",
30
+ "ER2",
31
+ "UH1",
32
+ "IY1",
33
+ "AH2",
34
+ "DH",
35
+ "IY0",
36
+ "EY1",
37
+ "IH0",
38
+ "K",
39
+ "N",
40
+ "W",
41
+ "IY2",
42
+ "T",
43
+ "AA1",
44
+ "ER1",
45
+ "EH2",
46
+ "OY0",
47
+ "UH2",
48
+ "UW1",
49
+ "Z",
50
+ "AW2",
51
+ "AW1",
52
+ "V",
53
+ "UW2",
54
+ "AA2",
55
+ "ER",
56
+ "AW0",
57
+ "UW0",
58
+ "R",
59
+ "OW1",
60
+ "EH1",
61
+ "ZH",
62
+ "AE0",
63
+ "IH2",
64
+ "IH",
65
+ "Y",
66
+ "JH",
67
+ "P",
68
+ "AY1",
69
+ "EY0",
70
+ "OY2",
71
+ "TH",
72
+ "HH",
73
+ "D",
74
+ "ER0",
75
+ "CH",
76
+ "AO1",
77
+ "AE1",
78
+ "AO2",
79
+ "OY1",
80
+ "AY2",
81
+ "IH1",
82
+ "OW0",
83
+ "L",
84
+ "SH",
85
+ }
86
+
87
+
88
+ def post_replace_ph(ph):
89
+ rep_map = {
90
+ ":": ",",
91
+ ";": ",",
92
+ ",": ",",
93
+ "。": ".",
94
+ "!": "!",
95
+ "?": "?",
96
+ "\n": ".",
97
+ "·": ",",
98
+ "、": ",",
99
+ "...": "…",
100
+ "v": "V",
101
+ }
102
+ if ph in rep_map.keys():
103
+ ph = rep_map[ph]
104
+ if ph in symbols:
105
+ return ph
106
+ if ph not in symbols:
107
+ ph = "UNK"
108
+ return ph
109
+
110
+
111
+ def read_dict():
112
+ g2p_dict = {}
113
+ start_line = 49
114
+ with open(CMU_DICT_PATH) as f:
115
+ line = f.readline()
116
+ line_index = 1
117
+ while line:
118
+ if line_index >= start_line:
119
+ line = line.strip()
120
+ word_split = line.split(" ")
121
+ word = word_split[0]
122
+
123
+ syllable_split = word_split[1].split(" - ")
124
+ g2p_dict[word] = []
125
+ for syllable in syllable_split:
126
+ phone_split = syllable.split(" ")
127
+ g2p_dict[word].append(phone_split)
128
+
129
+ line_index = line_index + 1
130
+ line = f.readline()
131
+
132
+ return g2p_dict
133
+
134
+
135
+ def cache_dict(g2p_dict, file_path):
136
+ with open(file_path, "wb") as pickle_file:
137
+ pickle.dump(g2p_dict, pickle_file)
138
+
139
+
140
+ def get_dict():
141
+ if os.path.exists(CACHE_PATH):
142
+ with open(CACHE_PATH, "rb") as pickle_file:
143
+ g2p_dict = pickle.load(pickle_file)
144
+ else:
145
+ g2p_dict = read_dict()
146
+ cache_dict(g2p_dict, CACHE_PATH)
147
+
148
+ return g2p_dict
149
+
150
+
151
+ eng_dict = get_dict()
152
+
153
+
154
+ def refine_ph(phn):
155
+ tone = 0
156
+ if re.search(r"\d$", phn):
157
+ tone = int(phn[-1]) + 1
158
+ phn = phn[:-1]
159
+ return phn.lower(), tone
160
+
161
+
162
+ def refine_syllables(syllables):
163
+ tones = []
164
+ phonemes = []
165
+ for phn_list in syllables:
166
+ for i in range(len(phn_list)):
167
+ phn = phn_list[i]
168
+ phn, tone = refine_ph(phn)
169
+ phonemes.append(phn)
170
+ tones.append(tone)
171
+ return phonemes, tones
172
+
173
+
174
+ def text_normalize(text):
175
+ # todo: eng text normalize
176
+ return text
177
+
178
+
179
+ def g2p(text):
180
+ phones = []
181
+ tones = []
182
+ words = re.split(r"([,;.\-\?\!\s+])", text)
183
+ for w in words:
184
+ if w.upper() in eng_dict:
185
+ phns, tns = refine_syllables(eng_dict[w.upper()])
186
+ phones += phns
187
+ tones += tns
188
+ else:
189
+ phone_list = list(filter(lambda p: p != " ", _g2p(w)))
190
+ for ph in phone_list:
191
+ if ph in arpa:
192
+ ph, tn = refine_ph(ph)
193
+ phones.append(ph)
194
+ tones.append(tn)
195
+ else:
196
+ phones.append(ph)
197
+ tones.append(0)
198
+ # todo: implement word2ph
199
+ word2ph = [1 for i in phones]
200
+
201
+ phones = [post_replace_ph(i) for i in phones]
202
+ return phones, tones, word2ph
203
+
204
+
205
+ if __name__ == "__main__":
206
+ # print(get_dict())
207
+ # print(eng_word_to_phoneme("hello"))
208
+ print(g2p("In this paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))
209
+ # all_phones = set()
210
+ # for k, syllables in eng_dict.items():
211
+ # for group in syllables:
212
+ # for ph in group:
213
+ # all_phones.add(ph)
214
+ # print(all_phones)
text/english_bert_mock.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def get_bert_feature(norm_text, word2ph):
5
+ return torch.zeros(1024, sum(word2ph))
text/japanese.py ADDED
@@ -0,0 +1,704 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Convert Japanese text to phonemes which is
2
+ # compatible with Julius https://github.com/julius-speech/segmentation-kit
3
+ import re
4
+ import unicodedata
5
+
6
+ from transformers import AutoTokenizer
7
+
8
+ from text import punctuation, symbols
9
+
10
+ try:
11
+ import MeCab
12
+ except ImportError as e:
13
+ raise ImportError("Japanese requires mecab-python3 and unidic-lite.") from e
14
+ from num2words import num2words
15
+
16
+ _CONVRULES = [
17
+ # Conversion of 2 letters
18
+ "アァ/ a a",
19
+ "イィ/ i i",
20
+ "イェ/ i e",
21
+ "イャ/ y a",
22
+ "ウゥ/ u:",
23
+ "エェ/ e e",
24
+ "オォ/ o:",
25
+ "カァ/ k a:",
26
+ "キィ/ k i:",
27
+ "クゥ/ k u:",
28
+ "クャ/ ky a",
29
+ "クュ/ ky u",
30
+ "クョ/ ky o",
31
+ "ケェ/ k e:",
32
+ "コォ/ k o:",
33
+ "ガァ/ g a:",
34
+ "ギィ/ g i:",
35
+ "グゥ/ g u:",
36
+ "グャ/ gy a",
37
+ "グュ/ gy u",
38
+ "グョ/ gy o",
39
+ "ゲェ/ g e:",
40
+ "ゴォ/ g o:",
41
+ "サァ/ s a:",
42
+ "シィ/ sh i:",
43
+ "スゥ/ s u:",
44
+ "スャ/ sh a",
45
+ "スュ/ sh u",
46
+ "スョ/ sh o",
47
+ "セェ/ s e:",
48
+ "ソォ/ s o:",
49
+ "ザァ/ z a:",
50
+ "ジィ/ j i:",
51
+ "ズゥ/ z u:",
52
+ "ズャ/ zy a",
53
+ "ズュ/ zy u",
54
+ "ズョ/ zy o",
55
+ "ゼェ/ z e:",
56
+ "ゾォ/ z o:",
57
+ "タァ/ t a:",
58
+ "チィ/ ch i:",
59
+ "ツァ/ ts a",
60
+ "ツィ/ ts i",
61
+ "ツゥ/ ts u:",
62
+ "ツャ/ ch a",
63
+ "ツュ/ ch u",
64
+ "ツョ/ ch o",
65
+ "ツェ/ ts e",
66
+ "ツォ/ ts o",
67
+ "テェ/ t e:",
68
+ "トォ/ t o:",
69
+ "ダァ/ d a:",
70
+ "ヂィ/ j i:",
71
+ "ヅゥ/ d u:",
72
+ "ヅャ/ zy a",
73
+ "ヅュ/ zy u",
74
+ "ヅョ/ zy o",
75
+ "デェ/ d e:",
76
+ "ドォ/ d o:",
77
+ "ナァ/ n a:",
78
+ "ニィ/ n i:",
79
+ "ヌゥ/ n u:",
80
+ "ヌャ/ ny a",
81
+ "ヌュ/ ny u",
82
+ "ヌョ/ ny o",
83
+ "ネェ/ n e:",
84
+ "ノォ/ n o:",
85
+ "ハァ/ h a:",
86
+ "ヒィ/ h i:",
87
+ "フゥ/ f u:",
88
+ "フャ/ hy a",
89
+ "フュ/ hy u",
90
+ "フョ/ hy o",
91
+ "ヘェ/ h e:",
92
+ "ホォ/ h o:",
93
+ "バァ/ b a:",
94
+ "ビィ/ b i:",
95
+ "ブゥ/ b u:",
96
+ "フャ/ hy a",
97
+ "ブュ/ by u",
98
+ "フョ/ hy o",
99
+ "ベェ/ b e:",
100
+ "ボォ/ b o:",
101
+ "パァ/ p a:",
102
+ "ピィ/ p i:",
103
+ "プゥ/ p u:",
104
+ "プャ/ py a",
105
+ "プュ/ py u",
106
+ "プョ/ py o",
107
+ "ペェ/ p e:",
108
+ "ポォ/ p o:",
109
+ "マァ/ m a:",
110
+ "ミィ/ m i:",
111
+ "ムゥ/ m u:",
112
+ "ムャ/ my a",
113
+ "ムュ/ my u",
114
+ "ムョ/ my o",
115
+ "メェ/ m e:",
116
+ "モォ/ m o:",
117
+ "ヤァ/ y a:",
118
+ "ユゥ/ y u:",
119
+ "ユャ/ y a:",
120
+ "ユュ/ y u:",
121
+ "ユョ/ y o:",
122
+ "ヨォ/ y o:",
123
+ "ラァ/ r a:",
124
+ "リィ/ r i:",
125
+ "ルゥ/ r u:",
126
+ "ルャ/ ry a",
127
+ "ルュ/ ry u",
128
+ "ルョ/ ry o",
129
+ "レェ/ r e:",
130
+ "ロォ/ r o:",
131
+ "ワァ/ w a:",
132
+ "ヲォ/ o:",
133
+ "ディ/ d i",
134
+ "デェ/ d e:",
135
+ "デャ/ dy a",
136
+ "デュ/ dy u",
137
+ "デョ/ dy o",
138
+ "ティ/ t i",
139
+ "テェ/ t e:",
140
+ "テャ/ ty a",
141
+ "テュ/ ty u",
142
+ "テョ/ ty o",
143
+ "スィ/ s i",
144
+ "ズァ/ z u a",
145
+ "ズィ/ z i",
146
+ "ズゥ/ z u",
147
+ "ズャ/ zy a",
148
+ "ズュ/ zy u",
149
+ "ズョ/ zy o",
150
+ "ズェ/ z e",
151
+ "ズォ/ z o",
152
+ "キャ/ ky a",
153
+ "キュ/ ky u",
154
+ "キョ/ ky o",
155
+ "シャ/ sh a",
156
+ "シュ/ sh u",
157
+ "シェ/ sh e",
158
+ "ショ/ sh o",
159
+ "チャ/ ch a",
160
+ "チュ/ ch u",
161
+ "チェ/ ch e",
162
+ "チョ/ ch o",
163
+ "トゥ/ t u",
164
+ "トャ/ ty a",
165
+ "トュ/ ty u",
166
+ "トョ/ ty o",
167
+ "ドァ/ d o a",
168
+ "ドゥ/ d u",
169
+ "ドャ/ dy a",
170
+ "ドュ/ dy u",
171
+ "ドョ/ dy o",
172
+ "ドォ/ d o:",
173
+ "ニャ/ ny a",
174
+ "ニュ/ ny u",
175
+ "ニョ/ ny o",
176
+ "ヒャ/ hy a",
177
+ "ヒュ/ hy u",
178
+ "ヒョ/ hy o",
179
+ "ミャ/ my a",
180
+ "ミュ/ my u",
181
+ "ミョ/ my o",
182
+ "リャ/ ry a",
183
+ "リュ/ ry u",
184
+ "リョ/ ry o",
185
+ "ギャ/ gy a",
186
+ "ギュ/ gy u",
187
+ "ギョ/ gy o",
188
+ "ヂェ/ j e",
189
+ "ヂャ/ j a",
190
+ "ヂュ/ j u",
191
+ "ヂョ/ j o",
192
+ "ジェ/ j e",
193
+ "ジャ/ j a",
194
+ "ジュ/ j u",
195
+ "ジョ/ j o",
196
+ "ビャ/ by a",
197
+ "ビュ/ by u",
198
+ "ビョ/ by o",
199
+ "ピャ/ py a",
200
+ "ピュ/ py u",
201
+ "ピョ/ py o",
202
+ "ウァ/ u a",
203
+ "ウィ/ w i",
204
+ "ウェ/ w e",
205
+ "ウォ/ w o",
206
+ "ファ/ f a",
207
+ "フィ/ f i",
208
+ "フゥ/ f u",
209
+ "フャ/ hy a",
210
+ "フュ/ hy u",
211
+ "フョ/ hy o",
212
+ "フェ/ f e",
213
+ "フォ/ f o",
214
+ "ヴァ/ b a",
215
+ "ヴィ/ b i",
216
+ "ヴェ/ b e",
217
+ "ヴォ/ b o",
218
+ "ヴュ/ by u",
219
+ "アー/ a:",
220
+ "イー/ i:",
221
+ "ウー/ u:",
222
+ "エー/ e:",
223
+ "オー/ o:",
224
+ "カー/ k a:",
225
+ "キー/ k i:",
226
+ "クー/ k u:",
227
+ "ケー/ k e:",
228
+ "コー/ k o:",
229
+ "サー/ s a:",
230
+ "シー/ sh i:",
231
+ "スー/ s u:",
232
+ "セー/ s e:",
233
+ "ソー/ s o:",
234
+ "ター/ t a:",
235
+ "チー/ ch i:",
236
+ "ツー/ ts u:",
237
+ "テー/ t e:",
238
+ "トー/ t o:",
239
+ "ナー/ n a:",
240
+ "ニー/ n i:",
241
+ "ヌ���/ n u:",
242
+ "ネー/ n e:",
243
+ "ノー/ n o:",
244
+ "ハー/ h a:",
245
+ "ヒー/ h i:",
246
+ "フー/ f u:",
247
+ "ヘー/ h e:",
248
+ "ホー/ h o:",
249
+ "マー/ m a:",
250
+ "ミー/ m i:",
251
+ "ムー/ m u:",
252
+ "メー/ m e:",
253
+ "モー/ m o:",
254
+ "ラー/ r a:",
255
+ "リー/ r i:",
256
+ "ルー/ r u:",
257
+ "レー/ r e:",
258
+ "ロー/ r o:",
259
+ "ガー/ g a:",
260
+ "ギー/ g i:",
261
+ "グー/ g u:",
262
+ "ゲー/ g e:",
263
+ "ゴー/ g o:",
264
+ "ザー/ z a:",
265
+ "ジー/ j i:",
266
+ "ズー/ z u:",
267
+ "ゼー/ z e:",
268
+ "ゾー/ z o:",
269
+ "ダー/ d a:",
270
+ "ヂー/ j i:",
271
+ "ヅー/ z u:",
272
+ "デー/ d e:",
273
+ "ドー/ d o:",
274
+ "バー/ b a:",
275
+ "ビー/ b i:",
276
+ "ブー/ b u:",
277
+ "ベー/ b e:",
278
+ "ボー/ b o:",
279
+ "パー/ p a:",
280
+ "ピー/ p i:",
281
+ "プー/ p u:",
282
+ "ペー/ p e:",
283
+ "ポー/ p o:",
284
+ "ヤー/ y a:",
285
+ "ユー/ y u:",
286
+ "ヨー/ y o:",
287
+ "ワー/ w a:",
288
+ "ヰー/ i:",
289
+ "ヱー/ e:",
290
+ "ヲー/ o:",
291
+ "ヴー/ b u:",
292
+ # Conversion of 1 letter
293
+ "ア/ a",
294
+ "イ/ i",
295
+ "ウ/ u",
296
+ "エ/ e",
297
+ "オ/ o",
298
+ "カ/ k a",
299
+ "キ/ k i",
300
+ "ク/ k u",
301
+ "ケ/ k e",
302
+ "コ/ k o",
303
+ "サ/ s a",
304
+ "シ/ sh i",
305
+ "ス/ s u",
306
+ "セ/ s e",
307
+ "ソ/ s o",
308
+ "タ/ t a",
309
+ "チ/ ch i",
310
+ "ツ/ ts u",
311
+ "テ/ t e",
312
+ "ト/ t o",
313
+ "ナ/ n a",
314
+ "ニ/ n i",
315
+ "ヌ/ n u",
316
+ "ネ/ n e",
317
+ "ノ/ n o",
318
+ "ハ/ h a",
319
+ "ヒ/ h i",
320
+ "フ/ f u",
321
+ "ヘ/ h e",
322
+ "ホ/ h o",
323
+ "マ/ m a",
324
+ "ミ/ m i",
325
+ "ム/ m u",
326
+ "メ/ m e",
327
+ "モ/ m o",
328
+ "ラ/ r a",
329
+ "リ/ r i",
330
+ "ル/ r u",
331
+ "レ/ r e",
332
+ "ロ/ r o",
333
+ "ガ/ g a",
334
+ "ギ/ g i",
335
+ "グ/ g u",
336
+ "ゲ/ g e",
337
+ "ゴ/ g o",
338
+ "ザ/ z a",
339
+ "ジ/ j i",
340
+ "ズ/ z u",
341
+ "ゼ/ z e",
342
+ "ゾ/ z o",
343
+ "ダ/ d a",
344
+ "ヂ/ j i",
345
+ "ヅ/ z u",
346
+ "デ/ d e",
347
+ "ド/ d o",
348
+ "バ/ b a",
349
+ "ビ/ b i",
350
+ "ブ/ b u",
351
+ "ベ/ b e",
352
+ "ボ/ b o",
353
+ "パ/ p a",
354
+ "ピ/ p i",
355
+ "プ/ p u",
356
+ "ペ/ p e",
357
+ "ポ/ p o",
358
+ "ヤ/ y a",
359
+ "ユ/ y u",
360
+ "ヨ/ y o",
361
+ "ワ/ w a",
362
+ "ヰ/ i",
363
+ "ヱ/ e",
364
+ "ヲ/ o",
365
+ "ン/ N",
366
+ "ッ/ q",
367
+ "ヴ/ b u",
368
+ "ー/:", #这个不起作用
369
+ # Try converting broken text
370
+ "ァ/ a",
371
+ "ィ/ i",
372
+ "ゥ/ u",
373
+ "ェ/ e",
374
+ "ォ/ o",
375
+ "ヮ/ w a",
376
+ "ォ/ o",
377
+ # Symbols
378
+ "、/ ,",
379
+ "。/ .",
380
+ "!/ !",
381
+ "?/ ?",
382
+ "・/ ,",
383
+ ]
384
+
385
+ _COLON_RX = re.compile(":+")
386
+ _REJECT_RX = re.compile("[^ a-zA-Z:,.?]")
387
+
388
+
389
+ def _makerulemap():
390
+ l = [tuple(x.split("/")) for x in _CONVRULES]
391
+ return tuple({k: v for k, v in l if len(k) == i} for i in (1, 2))
392
+
393
+
394
+ _RULEMAP1, _RULEMAP2 = _makerulemap()
395
+
396
+
397
+ def kata2phoneme(text: str) -> str:
398
+ """Convert katakana text to phonemes."""
399
+ text = text.strip()
400
+ res = []
401
+ while text:
402
+ if len(text) >= 2:
403
+ x = _RULEMAP2.get(text[:2])
404
+ if x is not None:
405
+ text = text[2:]
406
+ res += x.split(" ")[1:]
407
+ continue
408
+ x = _RULEMAP1.get(text[0])
409
+ if x is not None:
410
+ text = text[1:]
411
+ res += x.split(" ")[1:]
412
+ continue
413
+ res.append(text[0])
414
+ text = text[1:]
415
+ # res = _COLON_RX.sub(":", res)
416
+ return res
417
+
418
+
419
+ _KATAKANA = "".join(chr(ch) for ch in range(ord("ァ"), ord("ン") + 1))
420
+ _HIRAGANA = "".join(chr(ch) for ch in range(ord("ぁ"), ord("ん") + 1))
421
+ _HIRA2KATATRANS = str.maketrans(_HIRAGANA, _KATAKANA)
422
+
423
+
424
+ def hira2kata(text: str) -> str:
425
+ text = text.translate(_HIRA2KATATRANS)
426
+ return text.replace("う゛", "ヴ")
427
+
428
+
429
+ _SYMBOL_TOKENS = set(list("・、。?!"))
430
+ _NO_YOMI_TOKENS = set(list("「」『』―()[][]"))
431
+ _TAGGER = MeCab.Tagger()
432
+
433
+
434
+ def text2kata(text: str) -> str:
435
+ parsed = _TAGGER.parse(text)
436
+ res = []
437
+ for line in parsed.split("\n"):
438
+ if line == "EOS":
439
+ break
440
+ parts = line.split("\t")
441
+
442
+ word, yomi = parts[0], parts[1]
443
+ if yomi:
444
+ res.append(yomi)
445
+ else:
446
+ if word in _SYMBOL_TOKENS:
447
+ res.append(word)
448
+ elif word in ("っ", "ッ"):
449
+ res.append("ッ")
450
+ elif word in _NO_YOMI_TOKENS:
451
+ pass
452
+ else:
453
+ res.append(word)
454
+ return hira2kata("".join(res))
455
+
456
+
457
+ def text2sep_kata(text: str) -> (list, list):
458
+ parsed = _TAGGER.parse(text)
459
+ res = []
460
+ sep = []
461
+ for line in parsed.split("\n"):
462
+ if line == "EOS":
463
+ break
464
+ parts = line.split("\t")
465
+
466
+ word, yomi = parts[0], parts[1]
467
+ if yomi:
468
+ res.append(yomi)
469
+ else:
470
+ if word in _SYMBOL_TOKENS:
471
+ res.append(word)
472
+ elif word in ("っ", "ッ"):
473
+ res.append("ッ")
474
+ elif word in _NO_YOMI_TOKENS:
475
+ pass
476
+ else:
477
+ res.append(word)
478
+ sep.append(word)
479
+ return sep, [hira2kata(i) for i in res]
480
+
481
+
482
+ _ALPHASYMBOL_YOMI = {
483
+ "#": "シャープ",
484
+ "%": "パーセント",
485
+ "&": "アンド",
486
+ "+": "プラス",
487
+ "-": "マイナス",
488
+ ":": "コロン",
489
+ ";": "セミコロン",
490
+ "<": "小なり",
491
+ "=": "イコール",
492
+ ">": "大なり",
493
+ "@": "アット",
494
+ "a": "エー",
495
+ "b": "ビー",
496
+ "c": "シー",
497
+ "d": "ディー",
498
+ "e": "イー",
499
+ "f": "エフ",
500
+ "g": "ジー",
501
+ "h": "エイチ",
502
+ "i": "アイ",
503
+ "j": "ジェー",
504
+ "k": "ケー",
505
+ "l": "エル",
506
+ "m": "エム",
507
+ "n": "エヌ",
508
+ "o": "オー",
509
+ "p": "ピー",
510
+ "q": "キュー",
511
+ "r": "アール",
512
+ "s": "エス",
513
+ "t": "ティー",
514
+ "u": "ユー",
515
+ "v": "ブイ",
516
+ "w": "ダブリュー",
517
+ "x": "エックス",
518
+ "y": "ワイ",
519
+ "z": "ゼット",
520
+ "α": "アルファ",
521
+ "β": "ベータ",
522
+ "γ": "ガンマ",
523
+ "δ": "デルタ",
524
+ "ε": "イプシロン",
525
+ "ζ": "ゼータ",
526
+ "η": "イータ",
527
+ "θ": "シータ",
528
+ "ι": "イオタ",
529
+ "κ": "カッパ",
530
+ "λ": "ラムダ",
531
+ "μ": "ミュー",
532
+ "ν": "ニュー",
533
+ "ξ": "クサイ",
534
+ "ο": "オミクロン",
535
+ "π": "パイ",
536
+ "ρ": "ロー",
537
+ "σ": "シグマ",
538
+ "τ": "タウ",
539
+ "υ": "ウプシロン",
540
+ "φ": "ファイ",
541
+ "χ": "カイ",
542
+ "ψ": "プサイ",
543
+ "ω": "オメガ",
544
+ }
545
+
546
+
547
+ _NUMBER_WITH_SEPARATOR_RX = re.compile("[0-9]{1,3}(,[0-9]{3})+")
548
+ _CURRENCY_MAP = {"$": "ドル", "¥": "円", "£": "ポンド", "€": "ユーロ"}
549
+ _CURRENCY_RX = re.compile(r"([$¥£€])([0-9.]*[0-9])")
550
+ _NUMBER_RX = re.compile(r"[0-9]+(\.[0-9]+)?")
551
+
552
+
553
+ def japanese_convert_numbers_to_words(text: str) -> str:
554
+ res = _NUMBER_WITH_SEPARATOR_RX.sub(lambda m: m[0].replace(",", ""), text)
555
+ res = _CURRENCY_RX.sub(lambda m: m[2] + _CURRENCY_MAP.get(m[1], m[1]), res)
556
+ res = _NUMBER_RX.sub(lambda m: num2words(m[0], lang="ja"), res)
557
+ return res
558
+
559
+
560
+ def japanese_convert_alpha_symbols_to_words(text: str) -> str:
561
+ return "".join([_ALPHASYMBOL_YOMI.get(ch, ch) for ch in text.lower()])
562
+
563
+
564
+ def japanese_text_to_phonemes(text: str) -> str:
565
+ """Convert Japanese text to phonemes."""
566
+ res = unicodedata.normalize("NFKC", text)
567
+ res = japanese_convert_numbers_to_words(res)
568
+ # res = japanese_convert_alpha_symbols_to_words(res)
569
+ res = text2kata(res)
570
+ res = kata2phoneme(res)
571
+ return res
572
+
573
+
574
+ def is_japanese_character(char):
575
+ # 定义日语文字系统的 Unicode 范围
576
+ japanese_ranges = [
577
+ (0x3040, 0x309F), # 平假名
578
+ (0x30A0, 0x30FF), # 片假名
579
+ (0x4E00, 0x9FFF), # 汉字 (CJK Unified Ideographs)
580
+ (0x3400, 0x4DBF), # 汉字扩展 A
581
+ (0x20000, 0x2A6DF), # 汉字扩展 B
582
+ # 可以根据需要添加其他汉字扩展范围
583
+ ]
584
+
585
+ # 将字符的 Unicode 编码转换为整数
586
+ char_code = ord(char)
587
+
588
+ # 检查字符是否在任何一个日语范围内
589
+ for start, end in japanese_ranges:
590
+ if start <= char_code <= end:
591
+ return True
592
+
593
+ return False
594
+
595
+
596
+ rep_map = {
597
+ ":": ",",
598
+ ";": ",",
599
+ ",": ",",
600
+ "。": ".",
601
+ "!": "!",
602
+ "?": "?",
603
+ "\n": ".",
604
+ "·": ",",
605
+ "、": ",",
606
+ "…": "...",
607
+ }
608
+
609
+
610
+ def replace_punctuation(text):
611
+ pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
612
+
613
+ replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
614
+
615
+ replaced_text = re.sub(
616
+ r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF"
617
+ + "".join(punctuation)
618
+ + r"]+",
619
+ "",
620
+ replaced_text,
621
+ )
622
+
623
+ return replaced_text
624
+
625
+
626
+ def text_normalize(text):
627
+ res = unicodedata.normalize("NFKC", text)
628
+ res = japanese_convert_numbers_to_words(res)
629
+ # res = "".join([i for i in res if is_japanese_character(i)])
630
+ res = replace_punctuation(res)
631
+ return res
632
+
633
+
634
+ def distribute_phone(n_phone, n_word):
635
+ phones_per_word = [0] * n_word
636
+ for task in range(n_phone):
637
+ min_tasks = min(phones_per_word)
638
+ min_index = phones_per_word.index(min_tasks)
639
+ phones_per_word[min_index] += 1
640
+ return phones_per_word
641
+
642
+
643
+ tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
644
+
645
+
646
+ def g2p(norm_text):
647
+ sep_text, sep_kata = text2sep_kata(norm_text)
648
+ sep_tokenized = [tokenizer.tokenize(i) for i in sep_text]
649
+ sep_phonemes = [kata2phoneme(i) for i in sep_kata]
650
+ # 异常处理,MeCab不认识的词的话会一路传到这里来,然后炸掉。目前来看只有那些超级稀有的生僻词会出现这种情况
651
+ for i in sep_phonemes:
652
+ for j in i:
653
+ assert j in symbols, (sep_text, sep_kata, sep_phonemes)
654
+
655
+ word2ph = []
656
+ for token, phoneme in zip(sep_tokenized, sep_phonemes):
657
+ phone_len = len(phoneme)
658
+ word_len = len(token)
659
+
660
+ aaa = distribute_phone(phone_len, word_len)
661
+ word2ph += aaa
662
+ phones = ["_"] + [j for i in sep_phonemes for j in i] + ["_"]
663
+ tones = [0 for i in phones]
664
+ word2ph = [1] + word2ph + [1]
665
+ return phones, tones, word2ph
666
+
667
+ if __name__ == "__main__":
668
+ tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
669
+ text = "だったら私、スズカさんと同じチームに入りたいです! スズカさんの走りを毎日近くで、なんなら真横から見ていたいので!"
670
+ #print(_TAGGER.parse(text))
671
+ # nodes = [{"surface": "こんにちは", "pos": "感動詞:*:*:*", "pron": "コンニチワ", "c_type": "*", "c_form": "*", "accent_type": 0, "accent_con_type": "-1", "chain_flag": -1}]
672
+ nodes = [{"surface":"こんにちは","pron": "コンニチワ","pos": "感動詞:*:*:*",}]
673
+ from text.japanese_bert import get_bert_feature
674
+ import pyopenjtalk
675
+ from marine.predict import Predictor
676
+ from marine.utils.openjtalk_util import convert_njd_feature_to_marine_feature
677
+ text = text_normalize(text)
678
+ NJD_NODES = pyopenjtalk.run_frontend(text)
679
+ predictor = Predictor()
680
+ # important_info = [{"string":i["string"],"pron":i["pron"],"acc":i["acc"]}for i in pyopenjtalk.estimate_accent(NJD_NODES)]
681
+ print(text)
682
+
683
+ marine_feature = convert_njd_feature_to_marine_feature(NJD_NODES)
684
+ results = predictor.predict([marine_feature])
685
+ for mora,acc in zip(results["mora"][0],results["accent_status"][0]):
686
+ print(f"{mora}:{acc}")
687
+ # for i in pyopenjtalk.estimate_accent(NJD_NODES):
688
+ # print(f"{i['string']}:{i['pron']}:{i['acc']}")
689
+ # info = pyopenjtalk.extract_fullcontext(text,run_marine=True)
690
+ # info_nomarine = pyopenjtalk.extract_fullcontext(text,run_marine=False)
691
+ # # nodes = pyopenjtalk
692
+ # # print(info)
693
+ # for i,j in zip(info,info_nomarine):
694
+ # print(i)
695
+ # print(j)
696
+ # print("\n")
697
+ # predictor = Predictor()
698
+ #print(pyopenjtalk.estimate_accent(text))
699
+ # output = predictor.predict([nodes],accent_represent_mode="high_low")
700
+ #print(output)
701
+ # phones, tones, word2ph = g2p(text)
702
+ # bert = get_bert_feature(text, word2ph)
703
+
704
+ # print(phones, tones, word2ph, bert.shape)
text/japanese_bert.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
3
+ import sys
4
+ import os
5
+ from text.japanese import text2sep_kata
6
+ tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
7
+
8
+ models = dict()
9
+
10
+
11
+ def get_bert_feature(text, word2ph, device=None):
12
+ sep_text,_ = text2sep_kata(text)
13
+ sep_tokens = [tokenizer.tokenize(t) for t in sep_text]
14
+ sep_ids = [tokenizer.convert_tokens_to_ids(t) for t in sep_tokens]
15
+ sep_ids = [2]+[item for sublist in sep_ids for item in sublist]+[3]
16
+ return get_bert_feature_with_token(sep_ids, word2ph, device)
17
+
18
+
19
+ # def get_bert_feature(text, word2ph, device=None):
20
+ # if (
21
+ # sys.platform == "darwin"
22
+ # and torch.backends.mps.is_available()
23
+ # and device == "cpu"
24
+ # ):
25
+ # device = "mps"
26
+ # if not device:
27
+ # device = "cuda"
28
+ # if device not in models.keys():
29
+ # models[device] = AutoModelForMaskedLM.from_pretrained(
30
+ # "cl-tohoku/bert-base-japanese-v3"
31
+ # ).to(device)
32
+ # with torch.no_grad():
33
+ # inputs = tokenizer(text, return_tensors="pt")
34
+ # for i in inputs:
35
+ # inputs[i] = inputs[i].to(device)
36
+ # res = models[device](**inputs, output_hidden_states=True)
37
+ # res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
38
+ # assert inputs["input_ids"].shape[-1] == len(word2ph)
39
+ # word2phone = word2ph
40
+ # phone_level_feature = []
41
+ # for i in range(len(word2phone)):
42
+ # repeat_feature = res[i].repeat(word2phone[i], 1)
43
+ # phone_level_feature.append(repeat_feature)
44
+
45
+ # phone_level_feature = torch.cat(phone_level_feature, dim=0)
46
+
47
+ # return phone_level_feature.T
48
+
49
+ def get_bert_feature_with_token(tokens, word2ph, device=None):
50
+ if (
51
+ sys.platform == "darwin"
52
+ and torch.backends.mps.is_available()
53
+ and device == "cpu"
54
+ ):
55
+ device = "mps"
56
+ if not device:
57
+ device = "cuda"
58
+ if device not in models.keys():
59
+ models[device] = AutoModelForMaskedLM.from_pretrained(
60
+ "./bert/bert-base-japanese-v3"
61
+ ).to(device)
62
+ with torch.no_grad():
63
+ inputs = torch.tensor(tokens).to(device).unsqueeze(0)
64
+ token_type_ids = torch.zeros_like(inputs).to(device)
65
+ attention_mask = torch.ones_like(inputs).to(device)
66
+ inputs = {"input_ids": inputs, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
67
+
68
+
69
+ # for i in inputs:
70
+ # inputs[i] = inputs[i].to(device)
71
+ res = models[device](**inputs, output_hidden_states=True)
72
+ res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
73
+ assert inputs["input_ids"].shape[-1] == len(word2ph)
74
+ word2phone = word2ph
75
+ phone_level_feature = []
76
+ for i in range(len(word2phone)):
77
+ repeat_feature = res[i].repeat(word2phone[i], 1)
78
+ phone_level_feature.append(repeat_feature)
79
+
80
+ phone_level_feature = torch.cat(phone_level_feature, dim=0)
81
+
82
+ return phone_level_feature.T
83
+
84
+
85
+ if __name__ == "__main__":
86
+ print(get_bert_feature("観覧車",[4,2]))
87
+ pass
text/opencpop-strict.txt ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ a AA a
2
+ ai AA ai
3
+ an AA an
4
+ ang AA ang
5
+ ao AA ao
6
+ ba b a
7
+ bai b ai
8
+ ban b an
9
+ bang b ang
10
+ bao b ao
11
+ bei b ei
12
+ ben b en
13
+ beng b eng
14
+ bi b i
15
+ bian b ian
16
+ biao b iao
17
+ bie b ie
18
+ bin b in
19
+ bing b ing
20
+ bo b o
21
+ bu b u
22
+ ca c a
23
+ cai c ai
24
+ can c an
25
+ cang c ang
26
+ cao c ao
27
+ ce c e
28
+ cei c ei
29
+ cen c en
30
+ ceng c eng
31
+ cha ch a
32
+ chai ch ai
33
+ chan ch an
34
+ chang ch ang
35
+ chao ch ao
36
+ che ch e
37
+ chen ch en
38
+ cheng ch eng
39
+ chi ch ir
40
+ chong ch ong
41
+ chou ch ou
42
+ chu ch u
43
+ chua ch ua
44
+ chuai ch uai
45
+ chuan ch uan
46
+ chuang ch uang
47
+ chui ch ui
48
+ chun ch un
49
+ chuo ch uo
50
+ ci c i0
51
+ cong c ong
52
+ cou c ou
53
+ cu c u
54
+ cuan c uan
55
+ cui c ui
56
+ cun c un
57
+ cuo c uo
58
+ da d a
59
+ dai d ai
60
+ dan d an
61
+ dang d ang
62
+ dao d ao
63
+ de d e
64
+ dei d ei
65
+ den d en
66
+ deng d eng
67
+ di d i
68
+ dia d ia
69
+ dian d ian
70
+ diao d iao
71
+ die d ie
72
+ ding d ing
73
+ diu d iu
74
+ dong d ong
75
+ dou d ou
76
+ du d u
77
+ duan d uan
78
+ dui d ui
79
+ dun d un
80
+ duo d uo
81
+ e EE e
82
+ ei EE ei
83
+ en EE en
84
+ eng EE eng
85
+ er EE er
86
+ fa f a
87
+ fan f an
88
+ fang f ang
89
+ fei f ei
90
+ fen f en
91
+ feng f eng
92
+ fo f o
93
+ fou f ou
94
+ fu f u
95
+ ga g a
96
+ gai g ai
97
+ gan g an
98
+ gang g ang
99
+ gao g ao
100
+ ge g e
101
+ gei g ei
102
+ gen g en
103
+ geng g eng
104
+ gong g ong
105
+ gou g ou
106
+ gu g u
107
+ gua g ua
108
+ guai g uai
109
+ guan g uan
110
+ guang g uang
111
+ gui g ui
112
+ gun g un
113
+ guo g uo
114
+ ha h a
115
+ hai h ai
116
+ han h an
117
+ hang h ang
118
+ hao h ao
119
+ he h e
120
+ hei h ei
121
+ hen h en
122
+ heng h eng
123
+ hong h ong
124
+ hou h ou
125
+ hu h u
126
+ hua h ua
127
+ huai h uai
128
+ huan h uan
129
+ huang h uang
130
+ hui h ui
131
+ hun h un
132
+ huo h uo
133
+ ji j i
134
+ jia j ia
135
+ jian j ian
136
+ jiang j iang
137
+ jiao j iao
138
+ jie j ie
139
+ jin j in
140
+ jing j ing
141
+ jiong j iong
142
+ jiu j iu
143
+ ju j v
144
+ jv j v
145
+ juan j van
146
+ jvan j van
147
+ jue j ve
148
+ jve j ve
149
+ jun j vn
150
+ jvn j vn
151
+ ka k a
152
+ kai k ai
153
+ kan k an
154
+ kang k ang
155
+ kao k ao
156
+ ke k e
157
+ kei k ei
158
+ ken k en
159
+ keng k eng
160
+ kong k ong
161
+ kou k ou
162
+ ku k u
163
+ kua k ua
164
+ kuai k uai
165
+ kuan k uan
166
+ kuang k uang
167
+ kui k ui
168
+ kun k un
169
+ kuo k uo
170
+ la l a
171
+ lai l ai
172
+ lan l an
173
+ lang l ang
174
+ lao l ao
175
+ le l e
176
+ lei l ei
177
+ leng l eng
178
+ li l i
179
+ lia l ia
180
+ lian l ian
181
+ liang l iang
182
+ liao l iao
183
+ lie l ie
184
+ lin l in
185
+ ling l ing
186
+ liu l iu
187
+ lo l o
188
+ long l ong
189
+ lou l ou
190
+ lu l u
191
+ luan l uan
192
+ lun l un
193
+ luo l uo
194
+ lv l v
195
+ lve l ve
196
+ ma m a
197
+ mai m ai
198
+ man m an
199
+ mang m ang
200
+ mao m ao
201
+ me m e
202
+ mei m ei
203
+ men m en
204
+ meng m eng
205
+ mi m i
206
+ mian m ian
207
+ miao m iao
208
+ mie m ie
209
+ min m in
210
+ ming m ing
211
+ miu m iu
212
+ mo m o
213
+ mou m ou
214
+ mu m u
215
+ na n a
216
+ nai n ai
217
+ nan n an
218
+ nang n ang
219
+ nao n ao
220
+ ne n e
221
+ nei n ei
222
+ nen n en
223
+ neng n eng
224
+ ni n i
225
+ nian n ian
226
+ niang n iang
227
+ niao n iao
228
+ nie n ie
229
+ nin n in
230
+ ning n ing
231
+ niu n iu
232
+ nong n ong
233
+ nou n ou
234
+ nu n u
235
+ nuan n uan
236
+ nun n un
237
+ nuo n uo
238
+ nv n v
239
+ nve n ve
240
+ o OO o
241
+ ou OO ou
242
+ pa p a
243
+ pai p ai
244
+ pan p an
245
+ pang p ang
246
+ pao p ao
247
+ pei p ei
248
+ pen p en
249
+ peng p eng
250
+ pi p i
251
+ pian p ian
252
+ piao p iao
253
+ pie p ie
254
+ pin p in
255
+ ping p ing
256
+ po p o
257
+ pou p ou
258
+ pu p u
259
+ qi q i
260
+ qia q ia
261
+ qian q ian
262
+ qiang q iang
263
+ qiao q iao
264
+ qie q ie
265
+ qin q in
266
+ qing q ing
267
+ qiong q iong
268
+ qiu q iu
269
+ qu q v
270
+ qv q v
271
+ quan q van
272
+ qvan q van
273
+ que q ve
274
+ qve q ve
275
+ qun q vn
276
+ qvn q vn
277
+ ran r an
278
+ rang r ang
279
+ rao r ao
280
+ re r e
281
+ ren r en
282
+ reng r eng
283
+ ri r ir
284
+ rong r ong
285
+ rou r ou
286
+ ru r u
287
+ rua r ua
288
+ ruan r uan
289
+ rui r ui
290
+ run r un
291
+ ruo r uo
292
+ sa s a
293
+ sai s ai
294
+ san s an
295
+ sang s ang
296
+ sao s ao
297
+ se s e
298
+ sen s en
299
+ seng s eng
300
+ sha sh a
301
+ shai sh ai
302
+ shan sh an
303
+ shang sh ang
304
+ shao sh ao
305
+ she sh e
306
+ shei sh ei
307
+ shen sh en
308
+ sheng sh eng
309
+ shi sh ir
310
+ shou sh ou
311
+ shu sh u
312
+ shua sh ua
313
+ shuai sh uai
314
+ shuan sh uan
315
+ shuang sh uang
316
+ shui sh ui
317
+ shun sh un
318
+ shuo sh uo
319
+ si s i0
320
+ song s ong
321
+ sou s ou
322
+ su s u
323
+ suan s uan
324
+ sui s ui
325
+ sun s un
326
+ suo s uo
327
+ ta t a
328
+ tai t ai
329
+ tan t an
330
+ tang t ang
331
+ tao t ao
332
+ te t e
333
+ tei t ei
334
+ teng t eng
335
+ ti t i
336
+ tian t ian
337
+ tiao t iao
338
+ tie t ie
339
+ ting t ing
340
+ tong t ong
341
+ tou t ou
342
+ tu t u
343
+ tuan t uan
344
+ tui t ui
345
+ tun t un
346
+ tuo t uo
347
+ wa w a
348
+ wai w ai
349
+ wan w an
350
+ wang w ang
351
+ wei w ei
352
+ wen w en
353
+ weng w eng
354
+ wo w o
355
+ wu w u
356
+ xi x i
357
+ xia x ia
358
+ xian x ian
359
+ xiang x iang
360
+ xiao x iao
361
+ xie x ie
362
+ xin x in
363
+ xing x ing
364
+ xiong x iong
365
+ xiu x iu
366
+ xu x v
367
+ xv x v
368
+ xuan x van
369
+ xvan x van
370
+ xue x ve
371
+ xve x ve
372
+ xun x vn
373
+ xvn x vn
374
+ ya y a
375
+ yan y En
376
+ yang y ang
377
+ yao y ao
378
+ ye y E
379
+ yi y i
380
+ yin y in
381
+ ying y ing
382
+ yo y o
383
+ yong y ong
384
+ you y ou
385
+ yu y v
386
+ yv y v
387
+ yuan y van
388
+ yvan y van
389
+ yue y ve
390
+ yve y ve
391
+ yun y vn
392
+ yvn y vn
393
+ za z a
394
+ zai z ai
395
+ zan z an
396
+ zang z ang
397
+ zao z ao
398
+ ze z e
399
+ zei z ei
400
+ zen z en
401
+ zeng z eng
402
+ zha zh a
403
+ zhai zh ai
404
+ zhan zh an
405
+ zhang zh ang
406
+ zhao zh ao
407
+ zhe zh e
408
+ zhei zh ei
409
+ zhen zh en
410
+ zheng zh eng
411
+ zhi zh ir
412
+ zhong zh ong
413
+ zhou zh ou
414
+ zhu zh u
415
+ zhua zh ua
416
+ zhuai zh uai
417
+ zhuan zh uan
418
+ zhuang zh uang
419
+ zhui zh ui
420
+ zhun zh un
421
+ zhuo zh uo
422
+ zi z i0
423
+ zong z ong
424
+ zou z ou
425
+ zu z u
426
+ zuan z uan
427
+ zui z ui
428
+ zun z un
429
+ zuo z uo
text/symbols.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ punctuation = ["!", "?", "…", ",", ".", "'", "-"]
2
+ pu_symbols = punctuation + ["SP", "UNK"]
3
+ pad = "_"
4
+
5
+ # chinese
6
+ zh_symbols = [
7
+ "E",
8
+ "En",
9
+ "a",
10
+ "ai",
11
+ "an",
12
+ "ang",
13
+ "ao",
14
+ "b",
15
+ "c",
16
+ "ch",
17
+ "d",
18
+ "e",
19
+ "ei",
20
+ "en",
21
+ "eng",
22
+ "er",
23
+ "f",
24
+ "g",
25
+ "h",
26
+ "i",
27
+ "i0",
28
+ "ia",
29
+ "ian",
30
+ "iang",
31
+ "iao",
32
+ "ie",
33
+ "in",
34
+ "ing",
35
+ "iong",
36
+ "ir",
37
+ "iu",
38
+ "j",
39
+ "k",
40
+ "l",
41
+ "m",
42
+ "n",
43
+ "o",
44
+ "ong",
45
+ "ou",
46
+ "p",
47
+ "q",
48
+ "r",
49
+ "s",
50
+ "sh",
51
+ "t",
52
+ "u",
53
+ "ua",
54
+ "uai",
55
+ "uan",
56
+ "uang",
57
+ "ui",
58
+ "un",
59
+ "uo",
60
+ "v",
61
+ "van",
62
+ "ve",
63
+ "vn",
64
+ "w",
65
+ "x",
66
+ "y",
67
+ "z",
68
+ "zh",
69
+ "AA",
70
+ "EE",
71
+ "OO",
72
+ ]
73
+ num_zh_tones = 6
74
+
75
+ # japanese
76
+ ja_symbols = [
77
+ "N",
78
+ "a",
79
+ "a:",
80
+ "b",
81
+ "by",
82
+ "ch",
83
+ "d",
84
+ "dy",
85
+ "e",
86
+ "e:",
87
+ "f",
88
+ "g",
89
+ "gy",
90
+ "h",
91
+ "hy",
92
+ "i",
93
+ "i:",
94
+ "j",
95
+ "k",
96
+ "ky",
97
+ "m",
98
+ "my",
99
+ "n",
100
+ "ny",
101
+ "o",
102
+ "o:",
103
+ "p",
104
+ "py",
105
+ "q",
106
+ "r",
107
+ "ry",
108
+ "s",
109
+ "sh",
110
+ "t",
111
+ "ts",
112
+ "ty",
113
+ "u",
114
+ "u:",
115
+ "w",
116
+ "y",
117
+ "z",
118
+ "zy",
119
+ # ":"
120
+ ]
121
+ num_ja_tones = 1
122
+
123
+ # English
124
+ en_symbols = [
125
+ "aa",
126
+ "ae",
127
+ "ah",
128
+ "ao",
129
+ "aw",
130
+ "ay",
131
+ "b",
132
+ "ch",
133
+ "d",
134
+ "dh",
135
+ "eh",
136
+ "er",
137
+ "ey",
138
+ "f",
139
+ "g",
140
+ "hh",
141
+ "ih",
142
+ "iy",
143
+ "jh",
144
+ "k",
145
+ "l",
146
+ "m",
147
+ "n",
148
+ "ng",
149
+ "ow",
150
+ "oy",
151
+ "p",
152
+ "r",
153
+ "s",
154
+ "sh",
155
+ "t",
156
+ "th",
157
+ "uh",
158
+ "uw",
159
+ "V",
160
+ "w",
161
+ "y",
162
+ "z",
163
+ "zh",
164
+ ]
165
+ num_en_tones = 4
166
+
167
+ # combine all symbols
168
+ normal_symbols = sorted(set(zh_symbols + ja_symbols + en_symbols))
169
+ symbols = [pad] + normal_symbols + pu_symbols
170
+ sil_phonemes_ids = [symbols.index(i) for i in pu_symbols]
171
+
172
+ # combine all tones
173
+ num_tones = num_zh_tones + num_ja_tones + num_en_tones
174
+
175
+ # language maps
176
+ language_id_map = {"ZH": 0, "JP": 1, "EN": 2}
177
+ num_languages = len(language_id_map.keys())
178
+
179
+ language_tone_start_map = {
180
+ "ZH": 0,
181
+ "JP": num_zh_tones,
182
+ "EN": num_zh_tones + num_ja_tones,
183
+ }
184
+
185
+ if __name__ == "__main__":
186
+ a = set(zh_symbols)
187
+ b = set(en_symbols)
188
+ print(sorted(a & b))
text/tone_sandhi.py ADDED
@@ -0,0 +1,769 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import List
15
+ from typing import Tuple
16
+
17
+ import jieba
18
+ from pypinyin import lazy_pinyin
19
+ from pypinyin import Style
20
+
21
+
22
+ class ToneSandhi:
23
+ def __init__(self):
24
+ self.must_neural_tone_words = {
25
+ "麻烦",
26
+ "麻利",
27
+ "鸳鸯",
28
+ "高粱",
29
+ "骨头",
30
+ "骆驼",
31
+ "马虎",
32
+ "首饰",
33
+ "馒头",
34
+ "馄饨",
35
+ "风筝",
36
+ "难为",
37
+ "队伍",
38
+ "阔气",
39
+ "闺女",
40
+ "门道",
41
+ "锄头",
42
+ "铺盖",
43
+ "铃铛",
44
+ "铁匠",
45
+ "钥匙",
46
+ "里脊",
47
+ "里头",
48
+ "部分",
49
+ "那么",
50
+ "道士",
51
+ "造化",
52
+ "迷糊",
53
+ "连累",
54
+ "这么",
55
+ "这个",
56
+ "运气",
57
+ "过去",
58
+ "软和",
59
+ "转悠",
60
+ "踏实",
61
+ "跳蚤",
62
+ "跟头",
63
+ "趔趄",
64
+ "财主",
65
+ "豆腐",
66
+ "讲究",
67
+ "记性",
68
+ "记号",
69
+ "认识",
70
+ "规矩",
71
+ "见识",
72
+ "裁缝",
73
+ "补丁",
74
+ "衣裳",
75
+ "衣服",
76
+ "衙门",
77
+ "街坊",
78
+ "行李",
79
+ "行当",
80
+ "蛤蟆",
81
+ "蘑菇",
82
+ "薄荷",
83
+ "葫芦",
84
+ "葡萄",
85
+ "萝卜",
86
+ "荸荠",
87
+ "苗条",
88
+ "苗头",
89
+ "苍蝇",
90
+ "芝麻",
91
+ "舒服",
92
+ "舒坦",
93
+ "舌头",
94
+ "自在",
95
+ "膏药",
96
+ "脾气",
97
+ "脑袋",
98
+ "脊梁",
99
+ "能耐",
100
+ "胳膊",
101
+ "胭脂",
102
+ "胡萝",
103
+ "胡琴",
104
+ "胡同",
105
+ "聪明",
106
+ "耽误",
107
+ "耽搁",
108
+ "耷拉",
109
+ "耳朵",
110
+ "老爷",
111
+ "老实",
112
+ "老婆",
113
+ "老头",
114
+ "老太",
115
+ "翻腾",
116
+ "罗嗦",
117
+ "罐头",
118
+ "编辑",
119
+ "结实",
120
+ "红火",
121
+ "累赘",
122
+ "糨糊",
123
+ "糊涂",
124
+ "精神",
125
+ "粮食",
126
+ "簸箕",
127
+ "篱笆",
128
+ "算计",
129
+ "算盘",
130
+ "答应",
131
+ "笤帚",
132
+ "笑语",
133
+ "笑话",
134
+ "窟窿",
135
+ "窝囊",
136
+ "窗户",
137
+ "稳当",
138
+ "稀罕",
139
+ "称呼",
140
+ "秧歌",
141
+ "秀气",
142
+ "秀才",
143
+ "福气",
144
+ "祖宗",
145
+ "砚台",
146
+ "码头",
147
+ "石榴",
148
+ "石头",
149
+ "石匠",
150
+ "知识",
151
+ "眼睛",
152
+ "眯缝",
153
+ "眨巴",
154
+ "眉毛",
155
+ "相声",
156
+ "盘算",
157
+ "白净",
158
+ "痢疾",
159
+ "痛快",
160
+ "疟疾",
161
+ "疙瘩",
162
+ "疏忽",
163
+ "畜生",
164
+ "生意",
165
+ "甘蔗",
166
+ "琵琶",
167
+ "琢磨",
168
+ "琉璃",
169
+ "玻璃",
170
+ "玫瑰",
171
+ "玄乎",
172
+ "狐狸",
173
+ "状元",
174
+ "特务",
175
+ "牲口",
176
+ "牙碜",
177
+ "牌楼",
178
+ "爽快",
179
+ "爱人",
180
+ "热闹",
181
+ "烧饼",
182
+ "烟筒",
183
+ "烂糊",
184
+ "点心",
185
+ "炊帚",
186
+ "灯笼",
187
+ "火候",
188
+ "漂亮",
189
+ "滑溜",
190
+ "溜达",
191
+ "温和",
192
+ "清楚",
193
+ "消息",
194
+ "浪头",
195
+ "活泼",
196
+ "比方",
197
+ "正经",
198
+ "欺负",
199
+ "模糊",
200
+ "槟榔",
201
+ "棺材",
202
+ "棒槌",
203
+ "棉花",
204
+ "核桃",
205
+ "栅栏",
206
+ "柴火",
207
+ "架势",
208
+ "枕头",
209
+ "枇杷",
210
+ "机灵",
211
+ "本事",
212
+ "木头",
213
+ "木匠",
214
+ "朋友",
215
+ "月饼",
216
+ "月亮",
217
+ "暖和",
218
+ "明白",
219
+ "时候",
220
+ "新鲜",
221
+ "故事",
222
+ "收拾",
223
+ "收成",
224
+ "提防",
225
+ "挖苦",
226
+ "挑剔",
227
+ "指甲",
228
+ "指头",
229
+ "拾掇",
230
+ "拳头",
231
+ "拨弄",
232
+ "招牌",
233
+ "招呼",
234
+ "抬举",
235
+ "护士",
236
+ "折腾",
237
+ "扫帚",
238
+ "打量",
239
+ "打算",
240
+ "打点",
241
+ "打扮",
242
+ "打听",
243
+ "打发",
244
+ "扎实",
245
+ "扁担",
246
+ "戒指",
247
+ "懒得",
248
+ "意识",
249
+ "意思",
250
+ "情形",
251
+ "悟性",
252
+ "怪物",
253
+ "思量",
254
+ "怎么",
255
+ "念头",
256
+ "念叨",
257
+ "快活",
258
+ "忙活",
259
+ "志气",
260
+ "心思",
261
+ "得罪",
262
+ "张罗",
263
+ "弟兄",
264
+ "开通",
265
+ "应酬",
266
+ "庄稼",
267
+ "干事",
268
+ "帮手",
269
+ "帐篷",
270
+ "希罕",
271
+ "师父",
272
+ "师傅",
273
+ "巴结",
274
+ "巴掌",
275
+ "差事",
276
+ "工夫",
277
+ "岁数",
278
+ "屁股",
279
+ "尾巴",
280
+ "少爷",
281
+ "小气",
282
+ "小伙",
283
+ "将就",
284
+ "对头",
285
+ "对付",
286
+ "寡妇",
287
+ "家伙",
288
+ "客气",
289
+ "实在",
290
+ "官司",
291
+ "学问",
292
+ "学生",
293
+ "字号",
294
+ "嫁妆",
295
+ "媳妇",
296
+ "媒人",
297
+ "婆家",
298
+ "娘家",
299
+ "委屈",
300
+ "姑娘",
301
+ "姐夫",
302
+ "妯娌",
303
+ "妥当",
304
+ "妖精",
305
+ "奴才",
306
+ "女婿",
307
+ "头发",
308
+ "太阳",
309
+ "大爷",
310
+ "大方",
311
+ "大意",
312
+ "大夫",
313
+ "多少",
314
+ "多么",
315
+ "外甥",
316
+ "壮实",
317
+ "地道",
318
+ "地方",
319
+ "在乎",
320
+ "困难",
321
+ "嘴巴",
322
+ "嘱咐",
323
+ "嘟囔",
324
+ "嘀咕",
325
+ "喜欢",
326
+ "喇嘛",
327
+ "喇叭",
328
+ "商量",
329
+ "唾沫",
330
+ "哑巴",
331
+ "哈欠",
332
+ "哆嗦",
333
+ "咳嗽",
334
+ "和尚",
335
+ "告诉",
336
+ "告示",
337
+ "含糊",
338
+ "吓唬",
339
+ "后头",
340
+ "名字",
341
+ "名堂",
342
+ "合同",
343
+ "吆喝",
344
+ "叫唤",
345
+ "口袋",
346
+ "厚道",
347
+ "厉害",
348
+ "千斤",
349
+ "包袱",
350
+ "包涵",
351
+ "匀称",
352
+ "勤快",
353
+ "动静",
354
+ "动弹",
355
+ "功夫",
356
+ "力气",
357
+ "前头",
358
+ "刺猬",
359
+ "刺激",
360
+ "别扭",
361
+ "利落",
362
+ "利索",
363
+ "利害",
364
+ "分析",
365
+ "出息",
366
+ "凑合",
367
+ "凉快",
368
+ "冷战",
369
+ "冤枉",
370
+ "冒失",
371
+ "养活",
372
+ "关系",
373
+ "先生",
374
+ "兄弟",
375
+ "便宜",
376
+ "使唤",
377
+ "佩服",
378
+ "作坊",
379
+ "体面",
380
+ "位置",
381
+ "似的",
382
+ "伙计",
383
+ "休息",
384
+ "什么",
385
+ "人家",
386
+ "亲戚",
387
+ "亲家",
388
+ "交情",
389
+ "云彩",
390
+ "事情",
391
+ "买卖",
392
+ "主意",
393
+ "丫头",
394
+ "丧气",
395
+ "两口",
396
+ "东西",
397
+ "东家",
398
+ "世故",
399
+ "不由",
400
+ "不在",
401
+ "下水",
402
+ "下巴",
403
+ "上头",
404
+ "上司",
405
+ "丈夫",
406
+ "丈人",
407
+ "一辈",
408
+ "那个",
409
+ "菩萨",
410
+ "父亲",
411
+ "母亲",
412
+ "咕噜",
413
+ "邋遢",
414
+ "费用",
415
+ "冤家",
416
+ "甜头",
417
+ "介绍",
418
+ "荒唐",
419
+ "大人",
420
+ "泥鳅",
421
+ "幸福",
422
+ "熟悉",
423
+ "计划",
424
+ "扑腾",
425
+ "蜡烛",
426
+ "姥爷",
427
+ "照顾",
428
+ "喉咙",
429
+ "吉他",
430
+ "弄堂",
431
+ "蚂蚱",
432
+ "凤凰",
433
+ "拖沓",
434
+ "寒碜",
435
+ "糟蹋",
436
+ "倒腾",
437
+ "报复",
438
+ "逻辑",
439
+ "盘缠",
440
+ "喽啰",
441
+ "牢骚",
442
+ "咖喱",
443
+ "扫把",
444
+ "惦记",
445
+ }
446
+ self.must_not_neural_tone_words = {
447
+ "男子",
448
+ "女子",
449
+ "分子",
450
+ "原子",
451
+ "量子",
452
+ "莲子",
453
+ "石子",
454
+ "瓜子",
455
+ "电子",
456
+ "人人",
457
+ "虎虎",
458
+ }
459
+ self.punc = ":,;。?!“”‘’':,;.?!"
460
+
461
+ # the meaning of jieba pos tag: https://blog.csdn.net/weixin_44174352/article/details/113731041
462
+ # e.g.
463
+ # word: "家里"
464
+ # pos: "s"
465
+ # finals: ['ia1', 'i3']
466
+ def _neural_sandhi(self, word: str, pos: str, finals: List[str]) -> List[str]:
467
+ # reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺
468
+ for j, item in enumerate(word):
469
+ if (
470
+ j - 1 >= 0
471
+ and item == word[j - 1]
472
+ and pos[0] in {"n", "v", "a"}
473
+ and word not in self.must_not_neural_tone_words
474
+ ):
475
+ finals[j] = finals[j][:-1] + "5"
476
+ ge_idx = word.find("个")
477
+ if len(word) >= 1 and word[-1] in "吧呢啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶":
478
+ finals[-1] = finals[-1][:-1] + "5"
479
+ elif len(word) >= 1 and word[-1] in "的地得":
480
+ finals[-1] = finals[-1][:-1] + "5"
481
+ # e.g. 走了, 看着, 去过
482
+ # elif len(word) == 1 and word in "了着过" and pos in {"ul", "uz", "ug"}:
483
+ # finals[-1] = finals[-1][:-1] + "5"
484
+ elif (
485
+ len(word) > 1
486
+ and word[-1] in "们子"
487
+ and pos in {"r", "n"}
488
+ and word not in self.must_not_neural_tone_words
489
+ ):
490
+ finals[-1] = finals[-1][:-1] + "5"
491
+ # e.g. 桌上, 地下, 家里
492
+ elif len(word) > 1 and word[-1] in "上下里" and pos in {"s", "l", "f"}:
493
+ finals[-1] = finals[-1][:-1] + "5"
494
+ # e.g. 上来, 下去
495
+ elif len(word) > 1 and word[-1] in "来去" and word[-2] in "上下进出回过起开":
496
+ finals[-1] = finals[-1][:-1] + "5"
497
+ # 个做量词
498
+ elif (
499
+ ge_idx >= 1
500
+ and (word[ge_idx - 1].isnumeric() or word[ge_idx - 1] in "几有两半多各整每做是")
501
+ ) or word == "个":
502
+ finals[ge_idx] = finals[ge_idx][:-1] + "5"
503
+ else:
504
+ if (
505
+ word in self.must_neural_tone_words
506
+ or word[-2:] in self.must_neural_tone_words
507
+ ):
508
+ finals[-1] = finals[-1][:-1] + "5"
509
+
510
+ word_list = self._split_word(word)
511
+ finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
512
+ for i, word in enumerate(word_list):
513
+ # conventional neural in Chinese
514
+ if (
515
+ word in self.must_neural_tone_words
516
+ or word[-2:] in self.must_neural_tone_words
517
+ ):
518
+ finals_list[i][-1] = finals_list[i][-1][:-1] + "5"
519
+ finals = sum(finals_list, [])
520
+ return finals
521
+
522
+ def _bu_sandhi(self, word: str, finals: List[str]) -> List[str]:
523
+ # e.g. 看不懂
524
+ if len(word) == 3 and word[1] == "不":
525
+ finals[1] = finals[1][:-1] + "5"
526
+ else:
527
+ for i, char in enumerate(word):
528
+ # "不" before tone4 should be bu2, e.g. 不怕
529
+ if char == "不" and i + 1 < len(word) and finals[i + 1][-1] == "4":
530
+ finals[i] = finals[i][:-1] + "2"
531
+ return finals
532
+
533
+ def _yi_sandhi(self, word: str, finals: List[str]) -> List[str]:
534
+ # "一" in number sequences, e.g. 一零零, 二一零
535
+ if word.find("一") != -1 and all(
536
+ [item.isnumeric() for item in word if item != "一"]
537
+ ):
538
+ return finals
539
+ # "一" between reduplication words should be yi5, e.g. 看一看
540
+ elif len(word) == 3 and word[1] == "一" and word[0] == word[-1]:
541
+ finals[1] = finals[1][:-1] + "5"
542
+ # when "一" is ordinal word, it should be yi1
543
+ elif word.startswith("第一"):
544
+ finals[1] = finals[1][:-1] + "1"
545
+ else:
546
+ for i, char in enumerate(word):
547
+ if char == "一" and i + 1 < len(word):
548
+ # "一" before tone4 should be yi2, e.g. 一段
549
+ if finals[i + 1][-1] == "4":
550
+ finals[i] = finals[i][:-1] + "2"
551
+ # "一" before non-tone4 should be yi4, e.g. 一天
552
+ else:
553
+ # "一" 后面如果是标点,还读一声
554
+ if word[i + 1] not in self.punc:
555
+ finals[i] = finals[i][:-1] + "4"
556
+ return finals
557
+
558
+ def _split_word(self, word: str) -> List[str]:
559
+ word_list = jieba.cut_for_search(word)
560
+ word_list = sorted(word_list, key=lambda i: len(i), reverse=False)
561
+ first_subword = word_list[0]
562
+ first_begin_idx = word.find(first_subword)
563
+ if first_begin_idx == 0:
564
+ second_subword = word[len(first_subword) :]
565
+ new_word_list = [first_subword, second_subword]
566
+ else:
567
+ second_subword = word[: -len(first_subword)]
568
+ new_word_list = [second_subword, first_subword]
569
+ return new_word_list
570
+
571
+ def _three_sandhi(self, word: str, finals: List[str]) -> List[str]:
572
+ if len(word) == 2 and self._all_tone_three(finals):
573
+ finals[0] = finals[0][:-1] + "2"
574
+ elif len(word) == 3:
575
+ word_list = self._split_word(word)
576
+ if self._all_tone_three(finals):
577
+ # disyllabic + monosyllabic, e.g. 蒙古/包
578
+ if len(word_list[0]) == 2:
579
+ finals[0] = finals[0][:-1] + "2"
580
+ finals[1] = finals[1][:-1] + "2"
581
+ # monosyllabic + disyllabic, e.g. 纸/老虎
582
+ elif len(word_list[0]) == 1:
583
+ finals[1] = finals[1][:-1] + "2"
584
+ else:
585
+ finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
586
+ if len(finals_list) == 2:
587
+ for i, sub in enumerate(finals_list):
588
+ # e.g. 所有/人
589
+ if self._all_tone_three(sub) and len(sub) == 2:
590
+ finals_list[i][0] = finals_list[i][0][:-1] + "2"
591
+ # e.g. 好/喜欢
592
+ elif (
593
+ i == 1
594
+ and not self._all_tone_three(sub)
595
+ and finals_list[i][0][-1] == "3"
596
+ and finals_list[0][-1][-1] == "3"
597
+ ):
598
+ finals_list[0][-1] = finals_list[0][-1][:-1] + "2"
599
+ finals = sum(finals_list, [])
600
+ # split idiom into two words who's length is 2
601
+ elif len(word) == 4:
602
+ finals_list = [finals[:2], finals[2:]]
603
+ finals = []
604
+ for sub in finals_list:
605
+ if self._all_tone_three(sub):
606
+ sub[0] = sub[0][:-1] + "2"
607
+ finals += sub
608
+
609
+ return finals
610
+
611
+ def _all_tone_three(self, finals: List[str]) -> bool:
612
+ return all(x[-1] == "3" for x in finals)
613
+
614
+ # merge "不" and the word behind it
615
+ # if don't merge, "不" sometimes appears alone according to jieba, which may occur sandhi error
616
+ def _merge_bu(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
617
+ new_seg = []
618
+ last_word = ""
619
+ for word, pos in seg:
620
+ if last_word == "不":
621
+ word = last_word + word
622
+ if word != "不":
623
+ new_seg.append((word, pos))
624
+ last_word = word[:]
625
+ if last_word == "不":
626
+ new_seg.append((last_word, "d"))
627
+ last_word = ""
628
+ return new_seg
629
+
630
+ # function 1: merge "一" and reduplication words in it's left and right, e.g. "听","一","听" ->"听一听"
631
+ # function 2: merge single "一" and the word behind it
632
+ # if don't merge, "一" sometimes appears alone according to jieba, which may occur sandhi error
633
+ # e.g.
634
+ # input seg: [('听', 'v'), ('一', 'm'), ('听', 'v')]
635
+ # output seg: [['听一听', 'v']]
636
+ def _merge_yi(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
637
+ new_seg = []
638
+ # function 1
639
+ for i, (word, pos) in enumerate(seg):
640
+ if (
641
+ i - 1 >= 0
642
+ and word == "一"
643
+ and i + 1 < len(seg)
644
+ and seg[i - 1][0] == seg[i + 1][0]
645
+ and seg[i - 1][1] == "v"
646
+ ):
647
+ new_seg[i - 1][0] = new_seg[i - 1][0] + "一" + new_seg[i - 1][0]
648
+ else:
649
+ if (
650
+ i - 2 >= 0
651
+ and seg[i - 1][0] == "一"
652
+ and seg[i - 2][0] == word
653
+ and pos == "v"
654
+ ):
655
+ continue
656
+ else:
657
+ new_seg.append([word, pos])
658
+ seg = new_seg
659
+ new_seg = []
660
+ # function 2
661
+ for i, (word, pos) in enumerate(seg):
662
+ if new_seg and new_seg[-1][0] == "一":
663
+ new_seg[-1][0] = new_seg[-1][0] + word
664
+ else:
665
+ new_seg.append([word, pos])
666
+ return new_seg
667
+
668
+ # the first and the second words are all_tone_three
669
+ def _merge_continuous_three_tones(
670
+ self, seg: List[Tuple[str, str]]
671
+ ) -> List[Tuple[str, str]]:
672
+ new_seg = []
673
+ sub_finals_list = [
674
+ lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
675
+ for (word, pos) in seg
676
+ ]
677
+ assert len(sub_finals_list) == len(seg)
678
+ merge_last = [False] * len(seg)
679
+ for i, (word, pos) in enumerate(seg):
680
+ if (
681
+ i - 1 >= 0
682
+ and self._all_tone_three(sub_finals_list[i - 1])
683
+ and self._all_tone_three(sub_finals_list[i])
684
+ and not merge_last[i - 1]
685
+ ):
686
+ # if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
687
+ if (
688
+ not self._is_reduplication(seg[i - 1][0])
689
+ and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
690
+ ):
691
+ new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
692
+ merge_last[i] = True
693
+ else:
694
+ new_seg.append([word, pos])
695
+ else:
696
+ new_seg.append([word, pos])
697
+
698
+ return new_seg
699
+
700
+ def _is_reduplication(self, word: str) -> bool:
701
+ return len(word) == 2 and word[0] == word[1]
702
+
703
+ # the last char of first word and the first char of second word is tone_three
704
+ def _merge_continuous_three_tones_2(
705
+ self, seg: List[Tuple[str, str]]
706
+ ) -> List[Tuple[str, str]]:
707
+ new_seg = []
708
+ sub_finals_list = [
709
+ lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
710
+ for (word, pos) in seg
711
+ ]
712
+ assert len(sub_finals_list) == len(seg)
713
+ merge_last = [False] * len(seg)
714
+ for i, (word, pos) in enumerate(seg):
715
+ if (
716
+ i - 1 >= 0
717
+ and sub_finals_list[i - 1][-1][-1] == "3"
718
+ and sub_finals_list[i][0][-1] == "3"
719
+ and not merge_last[i - 1]
720
+ ):
721
+ # if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
722
+ if (
723
+ not self._is_reduplication(seg[i - 1][0])
724
+ and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
725
+ ):
726
+ new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
727
+ merge_last[i] = True
728
+ else:
729
+ new_seg.append([word, pos])
730
+ else:
731
+ new_seg.append([word, pos])
732
+ return new_seg
733
+
734
+ def _merge_er(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
735
+ new_seg = []
736
+ for i, (word, pos) in enumerate(seg):
737
+ if i - 1 >= 0 and word == "儿" and seg[i - 1][0] != "#":
738
+ new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
739
+ else:
740
+ new_seg.append([word, pos])
741
+ return new_seg
742
+
743
+ def _merge_reduplication(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
744
+ new_seg = []
745
+ for i, (word, pos) in enumerate(seg):
746
+ if new_seg and word == new_seg[-1][0]:
747
+ new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
748
+ else:
749
+ new_seg.append([word, pos])
750
+ return new_seg
751
+
752
+ def pre_merge_for_modify(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
753
+ seg = self._merge_bu(seg)
754
+ try:
755
+ seg = self._merge_yi(seg)
756
+ except:
757
+ print("_merge_yi failed")
758
+ seg = self._merge_reduplication(seg)
759
+ seg = self._merge_continuous_three_tones(seg)
760
+ seg = self._merge_continuous_three_tones_2(seg)
761
+ seg = self._merge_er(seg)
762
+ return seg
763
+
764
+ def modified_tone(self, word: str, pos: str, finals: List[str]) -> List[str]:
765
+ finals = self._bu_sandhi(word, finals)
766
+ finals = self._yi_sandhi(word, finals)
767
+ finals = self._neural_sandhi(word, pos, finals)
768
+ finals = self._three_sandhi(word, finals)
769
+ return finals
transforms.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import numpy as np
5
+
6
+
7
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
8
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
+ DEFAULT_MIN_DERIVATIVE = 1e-3
10
+
11
+
12
+ def piecewise_rational_quadratic_transform(
13
+ inputs,
14
+ unnormalized_widths,
15
+ unnormalized_heights,
16
+ unnormalized_derivatives,
17
+ inverse=False,
18
+ tails=None,
19
+ tail_bound=1.0,
20
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
21
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
22
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
23
+ ):
24
+ if tails is None:
25
+ spline_fn = rational_quadratic_spline
26
+ spline_kwargs = {}
27
+ else:
28
+ spline_fn = unconstrained_rational_quadratic_spline
29
+ spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
30
+
31
+ outputs, logabsdet = spline_fn(
32
+ inputs=inputs,
33
+ unnormalized_widths=unnormalized_widths,
34
+ unnormalized_heights=unnormalized_heights,
35
+ unnormalized_derivatives=unnormalized_derivatives,
36
+ inverse=inverse,
37
+ min_bin_width=min_bin_width,
38
+ min_bin_height=min_bin_height,
39
+ min_derivative=min_derivative,
40
+ **spline_kwargs
41
+ )
42
+ return outputs, logabsdet
43
+
44
+
45
+ def searchsorted(bin_locations, inputs, eps=1e-6):
46
+ bin_locations[..., -1] += eps
47
+ return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
48
+
49
+
50
+ def unconstrained_rational_quadratic_spline(
51
+ inputs,
52
+ unnormalized_widths,
53
+ unnormalized_heights,
54
+ unnormalized_derivatives,
55
+ inverse=False,
56
+ tails="linear",
57
+ tail_bound=1.0,
58
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
59
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
60
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
61
+ ):
62
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
63
+ outside_interval_mask = ~inside_interval_mask
64
+
65
+ outputs = torch.zeros_like(inputs)
66
+ logabsdet = torch.zeros_like(inputs)
67
+
68
+ if tails == "linear":
69
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
70
+ constant = np.log(np.exp(1 - min_derivative) - 1)
71
+ unnormalized_derivatives[..., 0] = constant
72
+ unnormalized_derivatives[..., -1] = constant
73
+
74
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
75
+ logabsdet[outside_interval_mask] = 0
76
+ else:
77
+ raise RuntimeError("{} tails are not implemented.".format(tails))
78
+
79
+ (
80
+ outputs[inside_interval_mask],
81
+ logabsdet[inside_interval_mask],
82
+ ) = rational_quadratic_spline(
83
+ inputs=inputs[inside_interval_mask],
84
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
+ inverse=inverse,
88
+ left=-tail_bound,
89
+ right=tail_bound,
90
+ bottom=-tail_bound,
91
+ top=tail_bound,
92
+ min_bin_width=min_bin_width,
93
+ min_bin_height=min_bin_height,
94
+ min_derivative=min_derivative,
95
+ )
96
+
97
+ return outputs, logabsdet
98
+
99
+
100
+ def rational_quadratic_spline(
101
+ inputs,
102
+ unnormalized_widths,
103
+ unnormalized_heights,
104
+ unnormalized_derivatives,
105
+ inverse=False,
106
+ left=0.0,
107
+ right=1.0,
108
+ bottom=0.0,
109
+ top=1.0,
110
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
111
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
112
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
113
+ ):
114
+ if torch.min(inputs) < left or torch.max(inputs) > right:
115
+ raise ValueError("Input to a transform is not within its domain")
116
+
117
+ num_bins = unnormalized_widths.shape[-1]
118
+
119
+ if min_bin_width * num_bins > 1.0:
120
+ raise ValueError("Minimal bin width too large for the number of bins")
121
+ if min_bin_height * num_bins > 1.0:
122
+ raise ValueError("Minimal bin height too large for the number of bins")
123
+
124
+ widths = F.softmax(unnormalized_widths, dim=-1)
125
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
126
+ cumwidths = torch.cumsum(widths, dim=-1)
127
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
128
+ cumwidths = (right - left) * cumwidths + left
129
+ cumwidths[..., 0] = left
130
+ cumwidths[..., -1] = right
131
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
132
+
133
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
134
+
135
+ heights = F.softmax(unnormalized_heights, dim=-1)
136
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
137
+ cumheights = torch.cumsum(heights, dim=-1)
138
+ cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
139
+ cumheights = (top - bottom) * cumheights + bottom
140
+ cumheights[..., 0] = bottom
141
+ cumheights[..., -1] = top
142
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
143
+
144
+ if inverse:
145
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
146
+ else:
147
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
148
+
149
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
150
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
151
+
152
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
153
+ delta = heights / widths
154
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
155
+
156
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
157
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
158
+
159
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
160
+
161
+ if inverse:
162
+ a = (inputs - input_cumheights) * (
163
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
164
+ ) + input_heights * (input_delta - input_derivatives)
165
+ b = input_heights * input_derivatives - (inputs - input_cumheights) * (
166
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
167
+ )
168
+ c = -input_delta * (inputs - input_cumheights)
169
+
170
+ discriminant = b.pow(2) - 4 * a * c
171
+ assert (discriminant >= 0).all()
172
+
173
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
174
+ outputs = root * input_bin_widths + input_cumwidths
175
+
176
+ theta_one_minus_theta = root * (1 - root)
177
+ denominator = input_delta + (
178
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
179
+ * theta_one_minus_theta
180
+ )
181
+ derivative_numerator = input_delta.pow(2) * (
182
+ input_derivatives_plus_one * root.pow(2)
183
+ + 2 * input_delta * theta_one_minus_theta
184
+ + input_derivatives * (1 - root).pow(2)
185
+ )
186
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
187
+
188
+ return outputs, -logabsdet
189
+ else:
190
+ theta = (inputs - input_cumwidths) / input_bin_widths
191
+ theta_one_minus_theta = theta * (1 - theta)
192
+
193
+ numerator = input_heights * (
194
+ input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
195
+ )
196
+ denominator = input_delta + (
197
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
198
+ * theta_one_minus_theta
199
+ )
200
+ outputs = input_cumheights + numerator / denominator
201
+
202
+ derivative_numerator = input_delta.pow(2) * (
203
+ input_derivatives_plus_one * theta.pow(2)
204
+ + 2 * input_delta * theta_one_minus_theta
205
+ + input_derivatives * (1 - theta).pow(2)
206
+ )
207
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
208
+
209
+ return outputs, logabsdet
utils.py ADDED
@@ -0,0 +1,356 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import argparse
4
+ import logging
5
+ import json
6
+ import subprocess
7
+ import numpy as np
8
+ from scipy.io.wavfile import read
9
+ import torch
10
+
11
+ MATPLOTLIB_FLAG = False
12
+
13
+ logger = logging.getLogger(__name__)
14
+
15
+
16
+ def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
17
+ assert os.path.isfile(checkpoint_path)
18
+ checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
19
+ iteration = checkpoint_dict["iteration"]
20
+ learning_rate = checkpoint_dict["learning_rate"]
21
+ if (
22
+ optimizer is not None
23
+ and not skip_optimizer
24
+ and checkpoint_dict["optimizer"] is not None
25
+ ):
26
+ optimizer.load_state_dict(checkpoint_dict["optimizer"])
27
+ elif optimizer is None and not skip_optimizer:
28
+ # else: Disable this line if Infer and resume checkpoint,then enable the line upper
29
+ new_opt_dict = optimizer.state_dict()
30
+ new_opt_dict_params = new_opt_dict["param_groups"][0]["params"]
31
+ new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"]
32
+ new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params
33
+ optimizer.load_state_dict(new_opt_dict)
34
+
35
+ saved_state_dict = checkpoint_dict["model"]
36
+ if hasattr(model, "module"):
37
+ state_dict = model.module.state_dict()
38
+ else:
39
+ state_dict = model.state_dict()
40
+
41
+ new_state_dict = {}
42
+ for k, v in state_dict.items():
43
+ try:
44
+ # assert "emb_g" not in k
45
+ new_state_dict[k] = saved_state_dict[k]
46
+ assert saved_state_dict[k].shape == v.shape, (
47
+ saved_state_dict[k].shape,
48
+ v.shape,
49
+ )
50
+ except:
51
+ # For upgrading from the old version
52
+ if "ja_bert_proj" in k:
53
+ v = torch.zeros_like(v)
54
+ logger.warn(
55
+ f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility"
56
+ )
57
+ else:
58
+ logger.error(f"{k} is not in the checkpoint")
59
+
60
+ new_state_dict[k] = v
61
+
62
+ if hasattr(model, "module"):
63
+ model.module.load_state_dict(new_state_dict, strict=False)
64
+ else:
65
+ model.load_state_dict(new_state_dict, strict=False)
66
+
67
+ logger.info(
68
+ "Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
69
+ )
70
+
71
+ return model, optimizer, learning_rate, iteration
72
+
73
+
74
+ def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
75
+ logger.info(
76
+ "Saving model and optimizer state at iteration {} to {}".format(
77
+ iteration, checkpoint_path
78
+ )
79
+ )
80
+ if hasattr(model, "module"):
81
+ state_dict = model.module.state_dict()
82
+ else:
83
+ state_dict = model.state_dict()
84
+ torch.save(
85
+ {
86
+ "model": state_dict,
87
+ "iteration": iteration,
88
+ "optimizer": optimizer.state_dict(),
89
+ "learning_rate": learning_rate,
90
+ },
91
+ checkpoint_path,
92
+ )
93
+
94
+
95
+ def summarize(
96
+ writer,
97
+ global_step,
98
+ scalars={},
99
+ histograms={},
100
+ images={},
101
+ audios={},
102
+ audio_sampling_rate=22050,
103
+ ):
104
+ for k, v in scalars.items():
105
+ writer.add_scalar(k, v, global_step)
106
+ for k, v in histograms.items():
107
+ writer.add_histogram(k, v, global_step)
108
+ for k, v in images.items():
109
+ writer.add_image(k, v, global_step, dataformats="HWC")
110
+ for k, v in audios.items():
111
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
112
+
113
+
114
+ def latest_checkpoint_path(dir_path, regex="G_*.pth"):
115
+ f_list = glob.glob(os.path.join(dir_path, regex))
116
+ f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
117
+ x = f_list[-1]
118
+ return x
119
+
120
+
121
+ def plot_spectrogram_to_numpy(spectrogram):
122
+ global MATPLOTLIB_FLAG
123
+ if not MATPLOTLIB_FLAG:
124
+ import matplotlib
125
+
126
+ matplotlib.use("Agg")
127
+ MATPLOTLIB_FLAG = True
128
+ mpl_logger = logging.getLogger("matplotlib")
129
+ mpl_logger.setLevel(logging.WARNING)
130
+ import matplotlib.pylab as plt
131
+ import numpy as np
132
+
133
+ fig, ax = plt.subplots(figsize=(10, 2))
134
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
135
+ plt.colorbar(im, ax=ax)
136
+ plt.xlabel("Frames")
137
+ plt.ylabel("Channels")
138
+ plt.tight_layout()
139
+
140
+ fig.canvas.draw()
141
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
142
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
143
+ plt.close()
144
+ return data
145
+
146
+
147
+ def plot_alignment_to_numpy(alignment, info=None):
148
+ global MATPLOTLIB_FLAG
149
+ if not MATPLOTLIB_FLAG:
150
+ import matplotlib
151
+
152
+ matplotlib.use("Agg")
153
+ MATPLOTLIB_FLAG = True
154
+ mpl_logger = logging.getLogger("matplotlib")
155
+ mpl_logger.setLevel(logging.WARNING)
156
+ import matplotlib.pylab as plt
157
+ import numpy as np
158
+
159
+ fig, ax = plt.subplots(figsize=(6, 4))
160
+ im = ax.imshow(
161
+ alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
162
+ )
163
+ fig.colorbar(im, ax=ax)
164
+ xlabel = "Decoder timestep"
165
+ if info is not None:
166
+ xlabel += "\n\n" + info
167
+ plt.xlabel(xlabel)
168
+ plt.ylabel("Encoder timestep")
169
+ plt.tight_layout()
170
+
171
+ fig.canvas.draw()
172
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
173
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
174
+ plt.close()
175
+ return data
176
+
177
+
178
+ def load_wav_to_torch(full_path):
179
+ sampling_rate, data = read(full_path)
180
+ return torch.FloatTensor(data.astype(np.float32)), sampling_rate
181
+
182
+
183
+ def load_filepaths_and_text(filename, split="|"):
184
+ with open(filename, encoding="utf-8") as f:
185
+ filepaths_and_text = [line.strip().split(split) for line in f]
186
+ return filepaths_and_text
187
+
188
+
189
+ def get_hparams(init=True):
190
+ parser = argparse.ArgumentParser()
191
+ parser.add_argument(
192
+ "-c",
193
+ "--config",
194
+ type=str,
195
+ default="./configs/base.json",
196
+ help="JSON file for configuration",
197
+ )
198
+ parser.add_argument("-m", "--model", type=str, required=True, help="Model name")
199
+
200
+ args = parser.parse_args()
201
+ model_dir = os.path.join("./logs", args.model)
202
+
203
+ if not os.path.exists(model_dir):
204
+ os.makedirs(model_dir)
205
+
206
+ config_path = args.config
207
+ config_save_path = os.path.join(model_dir, "config.json")
208
+ if init:
209
+ with open(config_path, "r", encoding="utf-8") as f:
210
+ data = f.read()
211
+ with open(config_save_path, "w", encoding="utf-8") as f:
212
+ f.write(data)
213
+ else:
214
+ with open(config_save_path, "r", vencoding="utf-8") as f:
215
+ data = f.read()
216
+ config = json.loads(data)
217
+ hparams = HParams(**config)
218
+ hparams.model_dir = model_dir
219
+ return hparams
220
+
221
+
222
+ def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
223
+ """Freeing up space by deleting saved ckpts
224
+
225
+ Arguments:
226
+ path_to_models -- Path to the model directory
227
+ n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
228
+ sort_by_time -- True -> chronologically delete ckpts
229
+ False -> lexicographically delete ckpts
230
+ """
231
+ import re
232
+
233
+ ckpts_files = [
234
+ f
235
+ for f in os.listdir(path_to_models)
236
+ if os.path.isfile(os.path.join(path_to_models, f))
237
+ ]
238
+
239
+ def name_key(_f):
240
+ return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
241
+
242
+ def time_key(_f):
243
+ return os.path.getmtime(os.path.join(path_to_models, _f))
244
+
245
+ sort_key = time_key if sort_by_time else name_key
246
+
247
+ def x_sorted(_x):
248
+ return sorted(
249
+ [f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
250
+ key=sort_key,
251
+ )
252
+
253
+ to_del = [
254
+ os.path.join(path_to_models, fn)
255
+ for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep])
256
+ ]
257
+
258
+ def del_info(fn):
259
+ return logger.info(f".. Free up space by deleting ckpt {fn}")
260
+
261
+ def del_routine(x):
262
+ return [os.remove(x), del_info(x)]
263
+
264
+ [del_routine(fn) for fn in to_del]
265
+
266
+
267
+ def get_hparams_from_dir(model_dir):
268
+ config_save_path = os.path.join(model_dir, "config.json")
269
+ with open(config_save_path, "r", encoding="utf-8") as f:
270
+ data = f.read()
271
+ config = json.loads(data)
272
+
273
+ hparams = HParams(**config)
274
+ hparams.model_dir = model_dir
275
+ return hparams
276
+
277
+
278
+ def get_hparams_from_file(config_path):
279
+ with open(config_path, "r", encoding="utf-8") as f:
280
+ data = f.read()
281
+ config = json.loads(data)
282
+
283
+ hparams = HParams(**config)
284
+ return hparams
285
+
286
+
287
+ def check_git_hash(model_dir):
288
+ source_dir = os.path.dirname(os.path.realpath(__file__))
289
+ if not os.path.exists(os.path.join(source_dir, ".git")):
290
+ logger.warn(
291
+ "{} is not a git repository, therefore hash value comparison will be ignored.".format(
292
+ source_dir
293
+ )
294
+ )
295
+ return
296
+
297
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
298
+
299
+ path = os.path.join(model_dir, "githash")
300
+ if os.path.exists(path):
301
+ saved_hash = open(path).read()
302
+ if saved_hash != cur_hash:
303
+ logger.warn(
304
+ "git hash values are different. {}(saved) != {}(current)".format(
305
+ saved_hash[:8], cur_hash[:8]
306
+ )
307
+ )
308
+ else:
309
+ open(path, "w").write(cur_hash)
310
+
311
+
312
+ def get_logger(model_dir, filename="train.log"):
313
+ global logger
314
+ logger = logging.getLogger(os.path.basename(model_dir))
315
+ logger.setLevel(logging.DEBUG)
316
+
317
+ formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
318
+ if not os.path.exists(model_dir):
319
+ os.makedirs(model_dir)
320
+ h = logging.FileHandler(os.path.join(model_dir, filename))
321
+ h.setLevel(logging.DEBUG)
322
+ h.setFormatter(formatter)
323
+ logger.addHandler(h)
324
+ return logger
325
+
326
+
327
+ class HParams:
328
+ def __init__(self, **kwargs):
329
+ for k, v in kwargs.items():
330
+ if type(v) == dict:
331
+ v = HParams(**v)
332
+ self[k] = v
333
+
334
+ def keys(self):
335
+ return self.__dict__.keys()
336
+
337
+ def items(self):
338
+ return self.__dict__.items()
339
+
340
+ def values(self):
341
+ return self.__dict__.values()
342
+
343
+ def __len__(self):
344
+ return len(self.__dict__)
345
+
346
+ def __getitem__(self, key):
347
+ return getattr(self, key)
348
+
349
+ def __setitem__(self, key, value):
350
+ return setattr(self, key, value)
351
+
352
+ def __contains__(self, key):
353
+ return key in self.__dict__
354
+
355
+ def __repr__(self):
356
+ return self.__dict__.__repr__()