Himanshu-AT
increae res
ed7e1f3
raw
history blame
7.33 kB
import gradio as gr
import numpy as np
import spaces
import random
# from image_gen_aux import DepthPreprocessor
from PIL import Image
import torch
from torchvision import transforms
from diffusers import FluxFillPipeline, AutoencoderKL
from PIL import Image
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights("alvdansen/flux-koda")
pipe.enable_lora()
# vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae")
# processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
# preprocess = transforms.Compose(
# [
# transforms.Resize(
# (vae.config.sample_size, vae.config.sample_size),
# interpolation=transforms.InterpolationMode.BILINEAR,
# ),
# transforms.ToTensor(),
# transforms.Normalize([0.5], [0.5]),
# ]
# )
#
# image_np = image[0].cpu().numpy() # Move to CPU and convert to NumPy
# if image_np.shape[0] == 3: # Check if channels are first
# image_np = image_np.transpose(1, 2, 0)
# image_np = (image_np * 255).astype(np.uint8)
# image = Image.fromarray(image_np)
# def calculate_optimal_dimensions(image: Image.Image):
# # Extract the original dimensions
# original_width, original_height = image.size
# # Set constants
# MIN_ASPECT_RATIO = 9 / 16
# MAX_ASPECT_RATIO = 16 / 9
# FIXED_DIMENSION = 1024
# # Calculate the aspect ratio of the original image
# original_aspect_ratio = original_width / original_height
# # Determine which dimension to fix
# if original_aspect_ratio > 1: # Wider than tall
# width = FIXED_DIMENSION
# height = round(FIXED_DIMENSION / original_aspect_ratio)
# else: # Taller than wide
# height = FIXED_DIMENSION
# width = round(FIXED_DIMENSION * original_aspect_ratio)
# # Ensure dimensions are multiples of 8
# width = (width // 8) * 8
# height = (height // 8) * 8
# # Enforce aspect ratio limits
# calculated_aspect_ratio = width / height
# if calculated_aspect_ratio > MAX_ASPECT_RATIO:
# width = (height * MAX_ASPECT_RATIO // 8) * 8
# elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
# height = (width / MIN_ASPECT_RATIO // 8) * 8
# # Ensure width and height remain above the minimum dimensions
# width = max(width, 576) if width == FIXED_DIMENSION else width
# height = max(height, 576) if height == FIXED_DIMENSION else height
# return width, height
@spaces.GPU(durations=300)
def infer(edit_images, prompt, prompt2, width, height, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
# pipe.enable_xformers_memory_efficient_attention()
image = edit_images["background"]
# width, height = calculate_optimal_dimensions(image)
mask = edit_images["layers"][0]
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# controlImage = processor(image)
image = pipe(
# mask_image_latent=vae.encode(controlImage),
prompt=prompt,
prompt_2=prompt2,
image=image,
mask_image=mask,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=torch.Generator(device='cuda').manual_seed(seed),
# lora_scale=0.75 // not supported in this version
).images[0]
output_image_jpg = image.convert("RGB")
output_image_jpg.save("output.jpg", "JPEG")
return output_image_jpg, seed
# return image, seed
examples = [
"photography of a young woman, accent lighting, (front view:1.4), "
# "a tiny astronaut hatching from an egg on the moon",
# "a cat holding a sign that says hello world",
# "an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 1000px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [dev]
""")
with gr.Row():
with gr.Column():
edit_image = gr.ImageEditor(
label='Upload and draw mask for inpainting',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"]),
# height=600
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=2,
placeholder="Enter your prompt",
container=False,
)
prompt2 = gr.Text(
label="Prompt2",
show_label=False,
max_lines=2,
placeholder="Enter your second prompt",
container=False,
)
run_button = gr.Button("Run")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
visible=False
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
visible=False
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=30,
step=0.5,
value=50,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
with gr.Row():
width = gr.Slider(
label="width",
minimum=512,
maximum=3072,
step=1,
value=1024,
)
num_inference_steps = gr.Slider(
label="height",
minimum=512,
maximum=3072,
step=1,
value=1024,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [edit_image, prompt, prompt2, width, height, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.launch()