Spaces:
Sleeping
Sleeping
Himanshu-AT
commited on
Commit
·
ed7e1f3
1
Parent(s):
c1581f5
increae res
Browse files
app.py
CHANGED
@@ -22,16 +22,16 @@ pipe.enable_lora()
|
|
22 |
# vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae")
|
23 |
# processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
|
24 |
|
25 |
-
preprocess = transforms.Compose(
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
)
|
35 |
#
|
36 |
# image_np = image[0].cpu().numpy() # Move to CPU and convert to NumPy
|
37 |
|
@@ -42,49 +42,49 @@ preprocess = transforms.Compose(
|
|
42 |
|
43 |
# image = Image.fromarray(image_np)
|
44 |
|
45 |
-
def calculate_optimal_dimensions(image: Image.Image):
|
46 |
-
|
47 |
-
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
|
80 |
-
|
81 |
|
82 |
@spaces.GPU(durations=300)
|
83 |
-
def infer(edit_images, prompt,
|
84 |
# pipe.enable_xformers_memory_efficient_attention()
|
85 |
|
86 |
image = edit_images["background"]
|
87 |
-
width, height = calculate_optimal_dimensions(image)
|
88 |
mask = edit_images["layers"][0]
|
89 |
if randomize_seed:
|
90 |
seed = random.randint(0, MAX_SEED)
|
@@ -93,7 +93,7 @@ def infer(edit_images, prompt, prompt_2, seed=42, randomize_seed=False, width=10
|
|
93 |
image = pipe(
|
94 |
# mask_image_latent=vae.encode(controlImage),
|
95 |
prompt=prompt,
|
96 |
-
prompt_2=
|
97 |
image=image,
|
98 |
mask_image=mask,
|
99 |
height=height,
|
@@ -147,7 +147,7 @@ with gr.Blocks(css=css) as demo:
|
|
147 |
placeholder="Enter your prompt",
|
148 |
container=False,
|
149 |
)
|
150 |
-
|
151 |
label="Prompt2",
|
152 |
show_label=False,
|
153 |
max_lines=2,
|
@@ -208,10 +208,28 @@ with gr.Blocks(css=css) as demo:
|
|
208 |
value=28,
|
209 |
)
|
210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
gr.on(
|
212 |
triggers=[run_button.click, prompt.submit],
|
213 |
fn = infer,
|
214 |
-
inputs = [edit_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
215 |
outputs = [result, seed]
|
216 |
)
|
217 |
|
|
|
22 |
# vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae")
|
23 |
# processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
|
24 |
|
25 |
+
# preprocess = transforms.Compose(
|
26 |
+
# [
|
27 |
+
# transforms.Resize(
|
28 |
+
# (vae.config.sample_size, vae.config.sample_size),
|
29 |
+
# interpolation=transforms.InterpolationMode.BILINEAR,
|
30 |
+
# ),
|
31 |
+
# transforms.ToTensor(),
|
32 |
+
# transforms.Normalize([0.5], [0.5]),
|
33 |
+
# ]
|
34 |
+
# )
|
35 |
#
|
36 |
# image_np = image[0].cpu().numpy() # Move to CPU and convert to NumPy
|
37 |
|
|
|
42 |
|
43 |
# image = Image.fromarray(image_np)
|
44 |
|
45 |
+
# def calculate_optimal_dimensions(image: Image.Image):
|
46 |
+
# # Extract the original dimensions
|
47 |
+
# original_width, original_height = image.size
|
48 |
|
49 |
+
# # Set constants
|
50 |
+
# MIN_ASPECT_RATIO = 9 / 16
|
51 |
+
# MAX_ASPECT_RATIO = 16 / 9
|
52 |
+
# FIXED_DIMENSION = 1024
|
53 |
|
54 |
+
# # Calculate the aspect ratio of the original image
|
55 |
+
# original_aspect_ratio = original_width / original_height
|
56 |
|
57 |
+
# # Determine which dimension to fix
|
58 |
+
# if original_aspect_ratio > 1: # Wider than tall
|
59 |
+
# width = FIXED_DIMENSION
|
60 |
+
# height = round(FIXED_DIMENSION / original_aspect_ratio)
|
61 |
+
# else: # Taller than wide
|
62 |
+
# height = FIXED_DIMENSION
|
63 |
+
# width = round(FIXED_DIMENSION * original_aspect_ratio)
|
64 |
|
65 |
+
# # Ensure dimensions are multiples of 8
|
66 |
+
# width = (width // 8) * 8
|
67 |
+
# height = (height // 8) * 8
|
68 |
|
69 |
+
# # Enforce aspect ratio limits
|
70 |
+
# calculated_aspect_ratio = width / height
|
71 |
+
# if calculated_aspect_ratio > MAX_ASPECT_RATIO:
|
72 |
+
# width = (height * MAX_ASPECT_RATIO // 8) * 8
|
73 |
+
# elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
|
74 |
+
# height = (width / MIN_ASPECT_RATIO // 8) * 8
|
75 |
|
76 |
+
# # Ensure width and height remain above the minimum dimensions
|
77 |
+
# width = max(width, 576) if width == FIXED_DIMENSION else width
|
78 |
+
# height = max(height, 576) if height == FIXED_DIMENSION else height
|
79 |
|
80 |
+
# return width, height
|
81 |
|
82 |
@spaces.GPU(durations=300)
|
83 |
+
def infer(edit_images, prompt, prompt2, width, height, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
84 |
# pipe.enable_xformers_memory_efficient_attention()
|
85 |
|
86 |
image = edit_images["background"]
|
87 |
+
# width, height = calculate_optimal_dimensions(image)
|
88 |
mask = edit_images["layers"][0]
|
89 |
if randomize_seed:
|
90 |
seed = random.randint(0, MAX_SEED)
|
|
|
93 |
image = pipe(
|
94 |
# mask_image_latent=vae.encode(controlImage),
|
95 |
prompt=prompt,
|
96 |
+
prompt_2=prompt2,
|
97 |
image=image,
|
98 |
mask_image=mask,
|
99 |
height=height,
|
|
|
147 |
placeholder="Enter your prompt",
|
148 |
container=False,
|
149 |
)
|
150 |
+
prompt2 = gr.Text(
|
151 |
label="Prompt2",
|
152 |
show_label=False,
|
153 |
max_lines=2,
|
|
|
208 |
value=28,
|
209 |
)
|
210 |
|
211 |
+
with gr.Row():
|
212 |
+
|
213 |
+
width = gr.Slider(
|
214 |
+
label="width",
|
215 |
+
minimum=512,
|
216 |
+
maximum=3072,
|
217 |
+
step=1,
|
218 |
+
value=1024,
|
219 |
+
)
|
220 |
+
|
221 |
+
num_inference_steps = gr.Slider(
|
222 |
+
label="height",
|
223 |
+
minimum=512,
|
224 |
+
maximum=3072,
|
225 |
+
step=1,
|
226 |
+
value=1024,
|
227 |
+
)
|
228 |
+
|
229 |
gr.on(
|
230 |
triggers=[run_button.click, prompt.submit],
|
231 |
fn = infer,
|
232 |
+
inputs = [edit_image, prompt, prompt2, width, height, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
233 |
outputs = [result, seed]
|
234 |
)
|
235 |
|