Spaces:
Runtime error
Runtime error
File size: 7,331 Bytes
3210048 5193654 50d6b20 f9694e5 c1581f5 8b821ae 50d6b20 8b821ae 5193654 3210048 50d6b20 5193654 9335613 c6696f9 6f47450 c1581f5 5193654 ed7e1f3 8b821ae a9d7fe1 8b821ae ed7e1f3 50d6b20 ed7e1f3 5193654 ed7e1f3 5193654 ed7e1f3 5193654 ed7e1f3 5193654 ed7e1f3 5193654 ed7e1f3 5193654 ed7e1f3 5193654 50d6b20 ed7e1f3 50d6b20 5193654 ed7e1f3 5193654 6f47450 c1581f5 50d6b20 c1581f5 5193654 ed7e1f3 5193654 b0b7bea 50d6b20 e0123d5 50d6b20 e0123d5 f9694e5 e0123d5 50d6b20 f9694e5 50d6b20 5193654 3210048 5193654 50d6b20 5193654 50d6b20 5193654 50d6b20 5193654 50d6b20 c3e1273 50d6b20 5193654 50d6b20 5193654 c3e1273 5193654 50d6b20 5193654 ed7e1f3 c1581f5 5193654 f9694e5 5193654 f9694e5 5193654 50d6b20 5193654 50d6b20 5193654 50d6b20 5193654 f9694e5 50d6b20 ed7e1f3 50d6b20 ed7e1f3 50d6b20 3210048 6f47450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import gradio as gr
import numpy as np
import spaces
import random
# from image_gen_aux import DepthPreprocessor
from PIL import Image
import torch
from torchvision import transforms
from diffusers import FluxFillPipeline, AutoencoderKL
from PIL import Image
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights("alvdansen/flux-koda")
pipe.enable_lora()
# vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae")
# processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
# preprocess = transforms.Compose(
# [
# transforms.Resize(
# (vae.config.sample_size, vae.config.sample_size),
# interpolation=transforms.InterpolationMode.BILINEAR,
# ),
# transforms.ToTensor(),
# transforms.Normalize([0.5], [0.5]),
# ]
# )
#
# image_np = image[0].cpu().numpy() # Move to CPU and convert to NumPy
# if image_np.shape[0] == 3: # Check if channels are first
# image_np = image_np.transpose(1, 2, 0)
# image_np = (image_np * 255).astype(np.uint8)
# image = Image.fromarray(image_np)
# def calculate_optimal_dimensions(image: Image.Image):
# # Extract the original dimensions
# original_width, original_height = image.size
# # Set constants
# MIN_ASPECT_RATIO = 9 / 16
# MAX_ASPECT_RATIO = 16 / 9
# FIXED_DIMENSION = 1024
# # Calculate the aspect ratio of the original image
# original_aspect_ratio = original_width / original_height
# # Determine which dimension to fix
# if original_aspect_ratio > 1: # Wider than tall
# width = FIXED_DIMENSION
# height = round(FIXED_DIMENSION / original_aspect_ratio)
# else: # Taller than wide
# height = FIXED_DIMENSION
# width = round(FIXED_DIMENSION * original_aspect_ratio)
# # Ensure dimensions are multiples of 8
# width = (width // 8) * 8
# height = (height // 8) * 8
# # Enforce aspect ratio limits
# calculated_aspect_ratio = width / height
# if calculated_aspect_ratio > MAX_ASPECT_RATIO:
# width = (height * MAX_ASPECT_RATIO // 8) * 8
# elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
# height = (width / MIN_ASPECT_RATIO // 8) * 8
# # Ensure width and height remain above the minimum dimensions
# width = max(width, 576) if width == FIXED_DIMENSION else width
# height = max(height, 576) if height == FIXED_DIMENSION else height
# return width, height
@spaces.GPU(durations=300)
def infer(edit_images, prompt, prompt2, width, height, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
# pipe.enable_xformers_memory_efficient_attention()
image = edit_images["background"]
# width, height = calculate_optimal_dimensions(image)
mask = edit_images["layers"][0]
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# controlImage = processor(image)
image = pipe(
# mask_image_latent=vae.encode(controlImage),
prompt=prompt,
prompt_2=prompt2,
image=image,
mask_image=mask,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=torch.Generator(device='cuda').manual_seed(seed),
# lora_scale=0.75 // not supported in this version
).images[0]
output_image_jpg = image.convert("RGB")
output_image_jpg.save("output.jpg", "JPEG")
return output_image_jpg, seed
# return image, seed
examples = [
"photography of a young woman, accent lighting, (front view:1.4), "
# "a tiny astronaut hatching from an egg on the moon",
# "a cat holding a sign that says hello world",
# "an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 1000px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [dev]
""")
with gr.Row():
with gr.Column():
edit_image = gr.ImageEditor(
label='Upload and draw mask for inpainting',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"]),
# height=600
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=2,
placeholder="Enter your prompt",
container=False,
)
prompt2 = gr.Text(
label="Prompt2",
show_label=False,
max_lines=2,
placeholder="Enter your second prompt",
container=False,
)
run_button = gr.Button("Run")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
visible=False
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
visible=False
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=30,
step=0.5,
value=50,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
with gr.Row():
width = gr.Slider(
label="width",
minimum=512,
maximum=3072,
step=1,
value=1024,
)
num_inference_steps = gr.Slider(
label="height",
minimum=512,
maximum=3072,
step=1,
value=1024,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [edit_image, prompt, prompt2, width, height, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.launch()
|