Spaces:
Sleeping
Sleeping
Himanshu-AT
commited on
Commit
·
8b821ae
1
Parent(s):
6f47450
change to vae
Browse files- app.py +26 -9
- requirements.txt +2 -0
app.py
CHANGED
@@ -2,19 +2,15 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
|
4 |
import spaces
|
5 |
-
import torch
|
6 |
import random
|
7 |
from image_gen_aux import DepthPreprocessor
|
|
|
|
|
|
|
8 |
|
9 |
-
from diffusers import FluxFillPipeline
|
10 |
from PIL import Image
|
11 |
|
12 |
-
def remove_background(image):
|
13 |
-
# Placeholder function for background removal
|
14 |
-
# Use a library or model like Inspyrenet for actual implementation
|
15 |
-
mask = generate_mask(image)
|
16 |
-
subject = apply_mask(image, mask)
|
17 |
-
return subject, mask
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
MAX_IMAGE_SIZE = 2048
|
@@ -23,8 +19,29 @@ pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", tor
|
|
23 |
pipe.load_lora_weights("alvdansen/flux-koda")
|
24 |
pipe.enable_lora()
|
25 |
|
|
|
26 |
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def calculate_optimal_dimensions(image: Image.Image):
|
29 |
# Extract the original dimensions
|
30 |
original_width, original_height = image.size
|
@@ -74,7 +91,7 @@ def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height
|
|
74 |
|
75 |
controlImage = processor(image)[0].convert("RGB")
|
76 |
image = pipe(
|
77 |
-
|
78 |
prompt=prompt,
|
79 |
image=image,
|
80 |
mask_image=mask,
|
|
|
2 |
import numpy as np
|
3 |
|
4 |
import spaces
|
|
|
5 |
import random
|
6 |
from image_gen_aux import DepthPreprocessor
|
7 |
+
from PIL import Image
|
8 |
+
import torch
|
9 |
+
from torchvision import transforms
|
10 |
|
11 |
+
from diffusers import FluxFillPipeline, AutoencoderKL
|
12 |
from PIL import Image
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
MAX_IMAGE_SIZE = 2048
|
|
|
19 |
pipe.load_lora_weights("alvdansen/flux-koda")
|
20 |
pipe.enable_lora()
|
21 |
|
22 |
+
vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae")
|
23 |
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
|
24 |
|
25 |
+
preprocess = transforms.Compose(
|
26 |
+
[
|
27 |
+
transforms.Resize(
|
28 |
+
(vae.config.sample_size, vae.config.sample_size),
|
29 |
+
interpolation=transforms.InterpolationMode.BILINEAR,
|
30 |
+
),
|
31 |
+
transforms.ToTensor(),
|
32 |
+
transforms.Normalize([0.5], [0.5]),
|
33 |
+
]
|
34 |
+
)
|
35 |
+
#
|
36 |
+
# image_np = image[0].cpu().numpy() # Move to CPU and convert to NumPy
|
37 |
+
|
38 |
+
# if image_np.shape[0] == 3: # Check if channels are first
|
39 |
+
# image_np = image_np.transpose(1, 2, 0)
|
40 |
+
|
41 |
+
# image_np = (image_np * 255).astype(np.uint8)
|
42 |
+
|
43 |
+
image = Image.fromarray(image_np)
|
44 |
+
|
45 |
def calculate_optimal_dimensions(image: Image.Image):
|
46 |
# Extract the original dimensions
|
47 |
original_width, original_height = image.size
|
|
|
91 |
|
92 |
controlImage = processor(image)[0].convert("RGB")
|
93 |
image = pipe(
|
94 |
+
mask_image_latent=vae.encode(controlImage),
|
95 |
prompt=prompt,
|
96 |
image=image,
|
97 |
mask_image=mask,
|
requirements.txt
CHANGED
@@ -6,3 +6,5 @@ safetensors
|
|
6 |
sentencepiece
|
7 |
peft
|
8 |
xformers
|
|
|
|
|
|
6 |
sentencepiece
|
7 |
peft
|
8 |
xformers
|
9 |
+
torchvision
|
10 |
+
torch
|