File size: 9,911 Bytes
3534d80
3210048
5193654
8b821ae
3534d80
5193654
3534d80
 
3210048
3534d80
 
50d6b20
5193654
 
 
3534d80
 
 
 
 
dc9bec2
3534d80
 
 
dc9bec2
3534d80
 
 
 
dc9bec2
3534d80
 
dc9bec2
3534d80
 
 
 
 
 
 
5193654
3534d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50d6b20
3534d80
 
dc9bec2
3534d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5193654
3534d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5193654
 
6f47450
3534d80
 
5193654
 
 
 
 
 
 
b0b7bea
50d6b20
e0123d5
3534d80
e0123d5
 
50d6b20
3534d80
 
5193654
 
 
 
 
3210048
5193654
 
3534d80
5193654
 
3534d80
5193654
3534d80
50d6b20
5193654
50d6b20
3534d80
c3e1273
5193654
50d6b20
3534d80
5193654
c3e1273
3534d80
50d6b20
5193654
3534d80
 
 
 
 
c1581f5
3534d80
 
5193654
 
3534d80
 
 
 
 
 
 
 
 
 
 
 
 
f9694e5
5193654
 
50d6b20
 
 
 
 
5193654
 
50d6b20
3534d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50d6b20
 
 
 
 
3534d80
50d6b20
 
3534d80
50d6b20
 
 
 
 
 
 
 
3534d80
 
 
3210048
 
72cab49
b78ca95
 
72cab49
b78ca95
 
 
72cab49
b78ca95
 
72cab49
b78ca95
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

import gradio as gr
import numpy as np
import torch
import random
from PIL import Image
import cv2
import spaces

# ------------------ Inpainting Pipeline Setup ------------------ #
from diffusers import FluxFillPipeline

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

pipe = FluxFillPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
)
pipe.load_lora_weights("alvdansen/flux-koda")
pipe.enable_lora()

def calculate_optimal_dimensions(image: Image.Image):
    # Extract the original dimensions
    original_width, original_height = image.size

    # Set constants
    MIN_ASPECT_RATIO = 9 / 16
    MAX_ASPECT_RATIO = 16 / 9
    FIXED_DIMENSION = 1024

    # Calculate the aspect ratio of the original image
    original_aspect_ratio = original_width / original_height

    # Determine which dimension to fix
    if original_aspect_ratio > 1:  # Wider than tall
        width = FIXED_DIMENSION
        height = round(FIXED_DIMENSION / original_aspect_ratio)
    else:  # Taller than wide
        height = FIXED_DIMENSION
        width = round(FIXED_DIMENSION * original_aspect_ratio)

    # Ensure dimensions are multiples of 8
    width = (width // 8) * 8
    height = (height // 8) * 8

    # Enforce aspect ratio limits
    calculated_aspect_ratio = width / height
    if calculated_aspect_ratio > MAX_ASPECT_RATIO:
        width = (height * MAX_ASPECT_RATIO // 8) * 8
    elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
        height = (width / MIN_ASPECT_RATIO // 8) * 8

    # Ensure minimum dimensions are met
    width = max(width, 576) if width == FIXED_DIMENSION else width
    height = max(height, 576) if height == FIXED_DIMENSION else height

    return width, height

# ------------------ SAM (Transformers) Imports and Initialization ------------------ #
from transformers import SamModel, SamProcessor

# Load the model and processor from Hugging Face.
sam_model = SamModel.from_pretrained("facebook/sam-vit-base")
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")

@spaces.GPU(durations=300)
def generate_mask_with_sam(image: Image.Image, mask_prompt: str):
    """
    Generate a segmentation mask using SAM (via Hugging Face Transformers).

    The mask_prompt is expected to be a comma-separated string of two integers,
    e.g. "450,600" representing an (x,y) coordinate in the image.
    
    The function converts the coordinate into the proper input format for SAM and returns a binary mask.
    """
    if mask_prompt.strip() == "":
        raise ValueError("No mask prompt provided.")
    
    try:
        # Parse the mask_prompt into a coordinate
        coords = [int(x.strip()) for x in mask_prompt.split(",")]
        if len(coords) != 2:
            raise ValueError("Expected two comma-separated integers (x,y).")
    except Exception as e:
        raise ValueError("Invalid mask prompt. Please provide coordinates as 'x,y'. Error: " + str(e))
    
    # The SAM processor expects a list of input points.
    # Format the point as a list of lists; here we assume one point per image.
    # (The Transformers SAM expects the points in [x, y] order.)
    input_points = [coords]  # e.g. [[450,600]]
    # Optionally, you can supply input_labels (1 for foreground, 0 for background)
    input_labels = [1]
    
    # Prepare the inputs for the SAM processor.
    inputs = sam_processor(images=image,
                           input_points=[input_points],
                           input_labels=[input_labels],
                           return_tensors="pt")
    
    # Move tensors to the same device as the model.
    device = next(sam_model.parameters()).device
    inputs = {k: v.to(device) for k, v in inputs.items()}
    
    # Forward pass through SAM.
    with torch.no_grad():
        outputs = sam_model(**inputs)
    
    # The output contains predicted masks; we take the first mask from the first prompt.
    # (Assuming outputs.pred_masks is of shape (batch_size, num_masks, H, W))
    pred_masks = outputs.pred_masks  # Tensor of shape (1, num_masks, H, W)
    mask = pred_masks[0][0].detach().cpu().numpy()
    
    # Convert the mask to binary (0 or 255) using a threshold.
    mask_bin = (mask > 0.5).astype(np.uint8) * 255
    mask_pil = Image.fromarray(mask_bin)
    return mask_pil

# ------------------ Inference Function ------------------ #
@spaces.GPU(durations=300)
def infer(edit_images, prompt, mask_prompt,
          seed=42, randomize_seed=False, width=1024, height=1024,
          guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    # Get the base image from the "background" layer.
    image = edit_images["background"]
    width, height = calculate_optimal_dimensions(image)

    # If a mask prompt is provided, use the SAM-based mask generator.
    if mask_prompt and mask_prompt.strip() != "":
        try:
            mask = generate_mask_with_sam(image, mask_prompt)
        except Exception as e:
            raise ValueError("Error generating mask from prompt: " + str(e))
    else:
        # Fall back to using a manually drawn mask (from the first layer).
        try:
            mask = edit_images["layers"][0]
        except (TypeError, IndexError):
            raise ValueError("No mask provided. Please either draw a mask or supply a mask prompt.")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    # Run the inpainting diffusion pipeline with the provided prompt and mask.
    image_out = pipe(
        prompt=prompt,
        image=image,
        mask_image=mask,
        height=height,
        width=width,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=torch.Generator(device='cuda').manual_seed(seed),
    ).images[0]

    output_image_jpg = image_out.convert("RGB")
    output_image_jpg.save("output.jpg", "JPEG")
    return output_image_jpg, seed

# ------------------ Gradio UI ------------------ #
css = """
#col-container {
    margin: 0 auto;
    max-width: 1000px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# FLUX.1 [dev] with SAM (Transformers) Mask Generation")
        with gr.Row():
            with gr.Column():
                # The image editor now allows you to optionally draw a mask.
                edit_image = gr.ImageEditor(
                    label='Upload Image (and optionally draw a mask)',
                    type='pil',
                    sources=["upload", "webcam"],
                    image_mode='RGB',
                    layers=False,  # We will generate a mask automatically if needed.
                    brush=gr.Brush(colors=["#FFFFFF"]),
                )
                prompt = gr.Text(
                    label="Inpainting Prompt",
                    show_label=False,
                    max_lines=2,
                    placeholder="Enter your inpainting prompt",
                    container=False,
                )
                mask_prompt = gr.Text(
                    label="Mask Prompt (enter a coordinate as 'x,y')",
                    show_label=True,
                    placeholder="E.g. 450,600",
                    container=True,
                )
                generate_mask_btn = gr.Button("Generate Mask")
                mask_preview = gr.Image(label="Mask Preview", show_label=True)
                run_button = gr.Button("Run")
            result = gr.Image(label="Result", show_label=False)
        
        # Button to preview the generated mask.
        def on_generate_mask(image, mask_prompt):
            if image is None or mask_prompt.strip() == "":
                return None
            mask = generate_mask_with_sam(image, mask_prompt)
            return mask
        
        generate_mask_btn.click(
            fn=on_generate_mask,
            inputs=[edit_image, mask_prompt],
            outputs=[mask_preview]
        )

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                    visible=False
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                    visible=False
                )
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=30,
                    step=0.5,
                    value=3.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of Inference Steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[edit_image, prompt, mask_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

# demo.launch()
PASSWORD = os.getenv("GRADIO_PASSWORD")
USERNAME = os.getenv("GRADIO_USERNAME")
# Create an authentication object
def authenticate(username, password):
    if username == USERNAME and password == PASSWORD:
        return True

    else:
        return False
# Launch the app with authentication

demo.launch(auth=authenticate)