Spaces:
Runtime error
Runtime error
File size: 9,911 Bytes
3534d80 3210048 5193654 8b821ae 3534d80 5193654 3534d80 3210048 3534d80 50d6b20 5193654 3534d80 dc9bec2 3534d80 dc9bec2 3534d80 dc9bec2 3534d80 dc9bec2 3534d80 5193654 3534d80 50d6b20 3534d80 dc9bec2 3534d80 5193654 3534d80 5193654 6f47450 3534d80 5193654 b0b7bea 50d6b20 e0123d5 3534d80 e0123d5 50d6b20 3534d80 5193654 3210048 5193654 3534d80 5193654 3534d80 5193654 3534d80 50d6b20 5193654 50d6b20 3534d80 c3e1273 5193654 50d6b20 3534d80 5193654 c3e1273 3534d80 50d6b20 5193654 3534d80 c1581f5 3534d80 5193654 3534d80 f9694e5 5193654 50d6b20 5193654 50d6b20 3534d80 50d6b20 3534d80 50d6b20 3534d80 50d6b20 3534d80 3210048 72cab49 b78ca95 72cab49 b78ca95 72cab49 b78ca95 72cab49 b78ca95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import gradio as gr
import numpy as np
import torch
import random
from PIL import Image
import cv2
import spaces
# ------------------ Inpainting Pipeline Setup ------------------ #
from diffusers import FluxFillPipeline
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
pipe = FluxFillPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
)
pipe.load_lora_weights("alvdansen/flux-koda")
pipe.enable_lora()
def calculate_optimal_dimensions(image: Image.Image):
# Extract the original dimensions
original_width, original_height = image.size
# Set constants
MIN_ASPECT_RATIO = 9 / 16
MAX_ASPECT_RATIO = 16 / 9
FIXED_DIMENSION = 1024
# Calculate the aspect ratio of the original image
original_aspect_ratio = original_width / original_height
# Determine which dimension to fix
if original_aspect_ratio > 1: # Wider than tall
width = FIXED_DIMENSION
height = round(FIXED_DIMENSION / original_aspect_ratio)
else: # Taller than wide
height = FIXED_DIMENSION
width = round(FIXED_DIMENSION * original_aspect_ratio)
# Ensure dimensions are multiples of 8
width = (width // 8) * 8
height = (height // 8) * 8
# Enforce aspect ratio limits
calculated_aspect_ratio = width / height
if calculated_aspect_ratio > MAX_ASPECT_RATIO:
width = (height * MAX_ASPECT_RATIO // 8) * 8
elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
height = (width / MIN_ASPECT_RATIO // 8) * 8
# Ensure minimum dimensions are met
width = max(width, 576) if width == FIXED_DIMENSION else width
height = max(height, 576) if height == FIXED_DIMENSION else height
return width, height
# ------------------ SAM (Transformers) Imports and Initialization ------------------ #
from transformers import SamModel, SamProcessor
# Load the model and processor from Hugging Face.
sam_model = SamModel.from_pretrained("facebook/sam-vit-base")
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
@spaces.GPU(durations=300)
def generate_mask_with_sam(image: Image.Image, mask_prompt: str):
"""
Generate a segmentation mask using SAM (via Hugging Face Transformers).
The mask_prompt is expected to be a comma-separated string of two integers,
e.g. "450,600" representing an (x,y) coordinate in the image.
The function converts the coordinate into the proper input format for SAM and returns a binary mask.
"""
if mask_prompt.strip() == "":
raise ValueError("No mask prompt provided.")
try:
# Parse the mask_prompt into a coordinate
coords = [int(x.strip()) for x in mask_prompt.split(",")]
if len(coords) != 2:
raise ValueError("Expected two comma-separated integers (x,y).")
except Exception as e:
raise ValueError("Invalid mask prompt. Please provide coordinates as 'x,y'. Error: " + str(e))
# The SAM processor expects a list of input points.
# Format the point as a list of lists; here we assume one point per image.
# (The Transformers SAM expects the points in [x, y] order.)
input_points = [coords] # e.g. [[450,600]]
# Optionally, you can supply input_labels (1 for foreground, 0 for background)
input_labels = [1]
# Prepare the inputs for the SAM processor.
inputs = sam_processor(images=image,
input_points=[input_points],
input_labels=[input_labels],
return_tensors="pt")
# Move tensors to the same device as the model.
device = next(sam_model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
# Forward pass through SAM.
with torch.no_grad():
outputs = sam_model(**inputs)
# The output contains predicted masks; we take the first mask from the first prompt.
# (Assuming outputs.pred_masks is of shape (batch_size, num_masks, H, W))
pred_masks = outputs.pred_masks # Tensor of shape (1, num_masks, H, W)
mask = pred_masks[0][0].detach().cpu().numpy()
# Convert the mask to binary (0 or 255) using a threshold.
mask_bin = (mask > 0.5).astype(np.uint8) * 255
mask_pil = Image.fromarray(mask_bin)
return mask_pil
# ------------------ Inference Function ------------------ #
@spaces.GPU(durations=300)
def infer(edit_images, prompt, mask_prompt,
seed=42, randomize_seed=False, width=1024, height=1024,
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
# Get the base image from the "background" layer.
image = edit_images["background"]
width, height = calculate_optimal_dimensions(image)
# If a mask prompt is provided, use the SAM-based mask generator.
if mask_prompt and mask_prompt.strip() != "":
try:
mask = generate_mask_with_sam(image, mask_prompt)
except Exception as e:
raise ValueError("Error generating mask from prompt: " + str(e))
else:
# Fall back to using a manually drawn mask (from the first layer).
try:
mask = edit_images["layers"][0]
except (TypeError, IndexError):
raise ValueError("No mask provided. Please either draw a mask or supply a mask prompt.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Run the inpainting diffusion pipeline with the provided prompt and mask.
image_out = pipe(
prompt=prompt,
image=image,
mask_image=mask,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=torch.Generator(device='cuda').manual_seed(seed),
).images[0]
output_image_jpg = image_out.convert("RGB")
output_image_jpg.save("output.jpg", "JPEG")
return output_image_jpg, seed
# ------------------ Gradio UI ------------------ #
css = """
#col-container {
margin: 0 auto;
max-width: 1000px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# FLUX.1 [dev] with SAM (Transformers) Mask Generation")
with gr.Row():
with gr.Column():
# The image editor now allows you to optionally draw a mask.
edit_image = gr.ImageEditor(
label='Upload Image (and optionally draw a mask)',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False, # We will generate a mask automatically if needed.
brush=gr.Brush(colors=["#FFFFFF"]),
)
prompt = gr.Text(
label="Inpainting Prompt",
show_label=False,
max_lines=2,
placeholder="Enter your inpainting prompt",
container=False,
)
mask_prompt = gr.Text(
label="Mask Prompt (enter a coordinate as 'x,y')",
show_label=True,
placeholder="E.g. 450,600",
container=True,
)
generate_mask_btn = gr.Button("Generate Mask")
mask_preview = gr.Image(label="Mask Preview", show_label=True)
run_button = gr.Button("Run")
result = gr.Image(label="Result", show_label=False)
# Button to preview the generated mask.
def on_generate_mask(image, mask_prompt):
if image is None or mask_prompt.strip() == "":
return None
mask = generate_mask_with_sam(image, mask_prompt)
return mask
generate_mask_btn.click(
fn=on_generate_mask,
inputs=[edit_image, mask_prompt],
outputs=[mask_preview]
)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
visible=False
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
visible=False
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=30,
step=0.5,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[edit_image, prompt, mask_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
# demo.launch()
PASSWORD = os.getenv("GRADIO_PASSWORD")
USERNAME = os.getenv("GRADIO_USERNAME")
# Create an authentication object
def authenticate(username, password):
if username == USERNAME and password == PASSWORD:
return True
else:
return False
# Launch the app with authentication
demo.launch(auth=authenticate)
|