Spaces:
Sleeping
Sleeping
Himanshu-AT
commited on
Commit
·
dc9bec2
1
Parent(s):
a228de9
give ability to have multiple models
Browse files- app.py +33 -71
- lora_models.json +4 -0
app.py
CHANGED
@@ -3,6 +3,7 @@ import numpy as np
|
|
3 |
import os
|
4 |
import spaces
|
5 |
import random
|
|
|
6 |
# from image_gen_aux import DepthPreprocessor
|
7 |
from PIL import Image
|
8 |
import torch
|
@@ -16,73 +17,34 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
16 |
MAX_IMAGE_SIZE = 2048
|
17 |
|
18 |
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")
|
19 |
-
pipe.load_lora_weights("Himanshu806/testLora")
|
20 |
-
pipe.enable_lora()
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
# if image_np.shape[0] == 3: # Check if channels are first
|
39 |
-
# image_np = image_np.transpose(1, 2, 0)
|
40 |
-
|
41 |
-
# image_np = (image_np * 255).astype(np.uint8)
|
42 |
-
|
43 |
-
# image = Image.fromarray(image_np)
|
44 |
-
|
45 |
-
# def calculate_optimal_dimensions(image: Image.Image):
|
46 |
-
# # Extract the original dimensions
|
47 |
-
# original_width, original_height = image.size
|
48 |
-
|
49 |
-
# # Set constants
|
50 |
-
# MIN_ASPECT_RATIO = 9 / 16
|
51 |
-
# MAX_ASPECT_RATIO = 16 / 9
|
52 |
-
# FIXED_DIMENSION = 1024
|
53 |
-
|
54 |
-
# # Calculate the aspect ratio of the original image
|
55 |
-
# original_aspect_ratio = original_width / original_height
|
56 |
-
|
57 |
-
# # Determine which dimension to fix
|
58 |
-
# if original_aspect_ratio > 1: # Wider than tall
|
59 |
-
# width = FIXED_DIMENSION
|
60 |
-
# height = round(FIXED_DIMENSION / original_aspect_ratio)
|
61 |
-
# else: # Taller than wide
|
62 |
-
# height = FIXED_DIMENSION
|
63 |
-
# width = round(FIXED_DIMENSION * original_aspect_ratio)
|
64 |
-
|
65 |
-
# # Ensure dimensions are multiples of 8
|
66 |
-
# width = (width // 8) * 8
|
67 |
-
# height = (height // 8) * 8
|
68 |
-
|
69 |
-
# # Enforce aspect ratio limits
|
70 |
-
# calculated_aspect_ratio = width / height
|
71 |
-
# if calculated_aspect_ratio > MAX_ASPECT_RATIO:
|
72 |
-
# width = (height * MAX_ASPECT_RATIO // 8) * 8
|
73 |
-
# elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
|
74 |
-
# height = (width / MIN_ASPECT_RATIO // 8) * 8
|
75 |
-
|
76 |
-
# # Ensure width and height remain above the minimum dimensions
|
77 |
-
# width = max(width, 576) if width == FIXED_DIMENSION else width
|
78 |
-
# height = max(height, 576) if height == FIXED_DIMENSION else height
|
79 |
-
|
80 |
-
# return width, height
|
81 |
|
82 |
@spaces.GPU(durations=300)
|
83 |
-
def infer(edit_images, prompt,
|
84 |
# pipe.enable_xformers_memory_efficient_attention()
|
85 |
|
|
|
|
|
|
|
|
|
86 |
image = edit_images["background"]
|
87 |
# width, height = calculate_optimal_dimensions(image)
|
88 |
mask = edit_images["layers"][0]
|
@@ -93,7 +55,7 @@ def infer(edit_images, prompt, prompt2, width, height, seed=42, randomize_seed=F
|
|
93 |
image = pipe(
|
94 |
# mask_image_latent=vae.encode(controlImage),
|
95 |
prompt=prompt,
|
96 |
-
prompt_2=
|
97 |
image=image,
|
98 |
mask_image=mask,
|
99 |
height=height,
|
@@ -147,13 +109,13 @@ with gr.Blocks(css=css) as demo:
|
|
147 |
placeholder="Enter your prompt",
|
148 |
container=False,
|
149 |
)
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
container=False,
|
156 |
)
|
|
|
157 |
run_button = gr.Button("Run")
|
158 |
|
159 |
result = gr.Image(label="Result", show_label=False)
|
@@ -209,7 +171,7 @@ with gr.Blocks(css=css) as demo:
|
|
209 |
gr.on(
|
210 |
triggers=[run_button.click, prompt.submit],
|
211 |
fn = infer,
|
212 |
-
inputs = [edit_image, prompt,
|
213 |
outputs = [result, seed]
|
214 |
)
|
215 |
|
|
|
3 |
import os
|
4 |
import spaces
|
5 |
import random
|
6 |
+
import json
|
7 |
# from image_gen_aux import DepthPreprocessor
|
8 |
from PIL import Image
|
9 |
import torch
|
|
|
17 |
MAX_IMAGE_SIZE = 2048
|
18 |
|
19 |
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")
|
20 |
+
# pipe.load_lora_weights("Himanshu806/testLora")
|
21 |
+
# pipe.enable_lora()
|
22 |
+
|
23 |
+
with open("lora_models.json", "r") as f:
|
24 |
+
lora_models = json.load(f)
|
25 |
+
|
26 |
+
def download_model(model_name, model_path):
|
27 |
+
print(f"Downloading model: {model_name} from {model_path}")
|
28 |
+
try:
|
29 |
+
pipe.load_lora_weights(model_path)
|
30 |
+
print(f"Successfully downloaded model: {model_name}")
|
31 |
+
except Exception as e:
|
32 |
+
print(f"Failed to download model: {model_name}. Error: {e}")
|
33 |
+
|
34 |
+
# Iterate through the models and download each one
|
35 |
+
for model_name, model_path in lora_models.items():
|
36 |
+
download_model(model_name, model_path)
|
37 |
+
|
38 |
+
lora_models["None"] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
@spaces.GPU(durations=300)
|
41 |
+
def infer(edit_images, prompt, width, height, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
42 |
# pipe.enable_xformers_memory_efficient_attention()
|
43 |
|
44 |
+
if lora_model != "None":
|
45 |
+
pipe.load_lora_weights(lora_models[lora_model])
|
46 |
+
pipe.enable_lora()
|
47 |
+
|
48 |
image = edit_images["background"]
|
49 |
# width, height = calculate_optimal_dimensions(image)
|
50 |
mask = edit_images["layers"][0]
|
|
|
55 |
image = pipe(
|
56 |
# mask_image_latent=vae.encode(controlImage),
|
57 |
prompt=prompt,
|
58 |
+
prompt_2=prompt,
|
59 |
image=image,
|
60 |
mask_image=mask,
|
61 |
height=height,
|
|
|
109 |
placeholder="Enter your prompt",
|
110 |
container=False,
|
111 |
)
|
112 |
+
|
113 |
+
lora_model = gr.Dropdown(
|
114 |
+
label="Select LoRA Model",
|
115 |
+
choices=list(lora_models.keys()),
|
116 |
+
value="None",
|
|
|
117 |
)
|
118 |
+
|
119 |
run_button = gr.Button("Run")
|
120 |
|
121 |
result = gr.Image(label="Result", show_label=False)
|
|
|
171 |
gr.on(
|
172 |
triggers=[run_button.click, prompt.submit],
|
173 |
fn = infer,
|
174 |
+
inputs = [edit_image, prompt, width, height, lora_model, seed, randomize_seed, guidance_scale, num_inference_steps],
|
175 |
outputs = [result, seed]
|
176 |
)
|
177 |
|
lora_models.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"RahulFineTuned": "Himanshu806/testLora",
|
3 |
+
"KodaRealistic": "alvdansen/flux-koda"
|
4 |
+
}
|