Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
import numpy as np | |
import threading | |
from gradio_client import Client | |
from streamlit_audio_recorder import st_audiorec | |
# Initialize session state for chat history | |
if "messages" not in st.session_state: | |
st.session_state["messages"] = [] # Store chat history | |
# Load the ASR model using the Hugging Face transformers pipeline | |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") | |
# Function to generate a response using Gradio client | |
def generate_response(query): | |
try: | |
client = Client("Gopikanth123/llama2") | |
result = client.predict(query=query, api_name="/predict") | |
return result | |
except Exception as e: | |
return f"Error communicating with the Gradio backend: {e}" | |
# Function to handle user input and bot response | |
def handle_user_input(user_input): | |
if user_input: | |
# Add user message to session state | |
st.session_state["messages"].append({"user": user_input}) | |
# Generate bot response | |
response = generate_response(user_input) | |
st.session_state["messages"].append({"bot": response}) | |
# Speak out bot response in a new thread to avoid blocking | |
threading.Thread(target=speak_text, args=(response,), daemon=True).start() | |
# Function to speak text (Voice Output) | |
def speak_text(text): | |
import pyttsx3 | |
engine = pyttsx3.init() | |
engine.stop() # Ensure no previous loop is running | |
engine.say(text) | |
engine.runAndWait() | |
# Function to update chat history dynamically | |
def update_chat_history(): | |
chat_history = st.session_state["messages"] | |
for msg in chat_history: | |
if "user" in msg: | |
st.markdown(f"<div class='chat-bubble user-message'><strong>You:</strong> {msg['user']}</div>", unsafe_allow_html=True) | |
if "bot" in msg: | |
st.markdown(f"<div class='chat-bubble bot-message'><strong>Bot:</strong> {msg['bot']}</div>", unsafe_allow_html=True) | |
# Function to process and transcribe audio | |
def transcribe_audio(audio_data, sr): | |
# Normalize audio to float32 | |
audio_data = audio_data.astype(np.float32) | |
audio_data /= np.max(np.abs(audio_data)) | |
# Use the ASR model to transcribe the audio | |
transcription = transcriber({"sampling_rate": sr, "raw": audio_data})["text"] | |
return transcription | |
# Main Streamlit app | |
st.set_page_config(page_title="Llama2 Chatbot", page_icon="π€", layout="wide") | |
st.markdown( | |
""" | |
<style> | |
.stButton>button { | |
background-color: #6C63FF; | |
color: white; | |
font-size: 16px; | |
border-radius: 10px; | |
padding: 10px 20px; | |
} | |
.stTextInput>div>input { | |
border: 2px solid #6C63FF; | |
border-radius: 10px; | |
padding: 10px; | |
} | |
.chat-container { | |
background-color: #F7F9FC; | |
padding: 20px; | |
border-radius: 15px; | |
max-height: 400px; | |
overflow-y: auto; | |
} | |
.chat-bubble { | |
padding: 10px 15px; | |
border-radius: 15px; | |
margin: 5px 0; | |
max-width: 80%; | |
display: inline-block; | |
} | |
.user-message { | |
background-color: #D1C4E9; | |
text-align: left; | |
margin-left: auto; | |
} | |
.bot-message { | |
background-color: #BBDEFB; | |
text-align: left; | |
margin-right: auto; | |
} | |
.input-container { | |
display: flex; | |
justify-content: space-between; | |
gap: 10px; | |
padding: 10px 0; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
st.title("π€ Chat with Llama2 Bot") | |
st.markdown( | |
""" | |
Welcome to the *Llama2 Chatbot*! | |
- *Type* your message below, or | |
- *Use the microphone* to speak to the bot. | |
""" | |
) | |
# Display chat history | |
chat_history_container = st.container() | |
with chat_history_container: | |
# Add input field within a form | |
with st.form(key='input_form', clear_on_submit=True): | |
user_input = st.text_input("Type your message here...", placeholder="Hello, how are you?") | |
submit_button = st.form_submit_button("Send") | |
# Handle form submission | |
if submit_button: | |
handle_user_input(user_input) | |
# Separate button for speech recognition outside of the form | |
if st.button("Speak"): | |
# Record and process the speech using Streamlit Audio Recorder | |
audio_data, sr = st_audiorec() | |
if audio_data is not None: | |
st.audio(audio_data, format="audio/wav") | |
# Convert to numpy array | |
audio_np = np.array(audio_data) | |
# Transcribe the audio | |
transcription = transcribe_audio(audio_np, sr) | |
# Display the recognized text | |
st.session_state["user_input"] = transcription | |
st.success(f"Recognized Text: {transcription}") | |
handle_user_input(transcription) | |
st.markdown("### Chat History") | |
# Update chat history on every interaction | |
update_chat_history() | |