Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,17 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
|
|
3 |
import threading
|
4 |
-
import wave
|
5 |
-
import io
|
6 |
-
import speech_recognition as sr
|
7 |
from gradio_client import Client
|
8 |
-
|
9 |
|
10 |
-
# Initialize session state
|
11 |
if "messages" not in st.session_state:
|
12 |
st.session_state["messages"] = [] # Store chat history
|
13 |
|
|
|
|
|
|
|
14 |
# Function to generate a response using Gradio client
|
15 |
def generate_response(query):
|
16 |
try:
|
@@ -35,6 +36,7 @@ def handle_user_input(user_input):
|
|
35 |
|
36 |
# Function to speak text (Voice Output)
|
37 |
def speak_text(text):
|
|
|
38 |
engine = pyttsx3.init()
|
39 |
engine.stop() # Ensure no previous loop is running
|
40 |
engine.say(text)
|
@@ -49,69 +51,15 @@ def update_chat_history():
|
|
49 |
if "bot" in msg:
|
50 |
st.markdown(f"<div class='chat-bubble bot-message'><strong>Bot:</strong> {msg['bot']}</div>", unsafe_allow_html=True)
|
51 |
|
52 |
-
# Function to
|
53 |
-
def
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
audio_data = io.BytesIO(audio_bytes)
|
58 |
-
recognizer = sr.Recognizer()
|
59 |
|
60 |
-
#
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
try:
|
65 |
-
recognized_text = recognizer.recognize_google(audio)
|
66 |
-
st.session_state["user_input"] = recognized_text
|
67 |
-
st.success(f"Recognized Text: {recognized_text}")
|
68 |
-
handle_user_input(recognized_text)
|
69 |
-
except sr.UnknownValueError:
|
70 |
-
st.error("Sorry, I couldn't understand the audio.")
|
71 |
-
except sr.RequestError:
|
72 |
-
st.error("Could not request results; please check your internet connection.")
|
73 |
-
|
74 |
-
# JavaScript for audio recording and sending data to Streamlit
|
75 |
-
audio_recorder_html = """
|
76 |
-
<script>
|
77 |
-
let audioChunks = [];
|
78 |
-
let mediaRecorder;
|
79 |
-
|
80 |
-
function startRecording() {
|
81 |
-
navigator.mediaDevices.getUserMedia({ audio: true })
|
82 |
-
.then(function(stream) {
|
83 |
-
mediaRecorder = new MediaRecorder(stream);
|
84 |
-
mediaRecorder.ondataavailable = function(event) {
|
85 |
-
audioChunks.push(event.data);
|
86 |
-
};
|
87 |
-
mediaRecorder.onstop = function() {
|
88 |
-
const audioBlob = new Blob(audioChunks, { type: 'audio/wav' });
|
89 |
-
const reader = new FileReader();
|
90 |
-
reader.onloadend = function() {
|
91 |
-
const audioBase64 = reader.result.split(',')[1];
|
92 |
-
window.parent.postMessage({ 'type': 'audio_data', 'audio': audioBase64 }, '*');
|
93 |
-
};
|
94 |
-
reader.readAsDataURL(audioBlob);
|
95 |
-
};
|
96 |
-
mediaRecorder.start();
|
97 |
-
});
|
98 |
-
}
|
99 |
-
|
100 |
-
function stopRecording() {
|
101 |
-
mediaRecorder.stop();
|
102 |
-
}
|
103 |
-
|
104 |
-
function handleStartStop() {
|
105 |
-
if (mediaRecorder && mediaRecorder.state === "recording") {
|
106 |
-
stopRecording();
|
107 |
-
} else {
|
108 |
-
startRecording();
|
109 |
-
}
|
110 |
-
}
|
111 |
-
</script>
|
112 |
-
<button onclick="handleStartStop()">Start/Stop Recording</button>
|
113 |
-
<p>Click the button to start/stop audio recording.</p>
|
114 |
-
"""
|
115 |
|
116 |
# Main Streamlit app
|
117 |
st.set_page_config(page_title="Llama2 Chatbot", page_icon="🤖", layout="wide")
|
@@ -170,7 +118,7 @@ st.markdown(
|
|
170 |
"""
|
171 |
Welcome to the *Llama2 Chatbot*!
|
172 |
- *Type* your message below, or
|
173 |
-
- *
|
174 |
"""
|
175 |
)
|
176 |
|
@@ -186,17 +134,25 @@ with chat_history_container:
|
|
186 |
if submit_button:
|
187 |
handle_user_input(user_input)
|
188 |
|
189 |
-
#
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
-
|
193 |
-
|
194 |
|
195 |
-
#
|
196 |
-
|
197 |
-
audio_data = st.experimental_get_query_params().get('audio', [None])[0]
|
198 |
-
if audio_data:
|
199 |
-
recognize_speech_from_audio(audio_data)
|
200 |
|
201 |
-
#
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
import numpy as np
|
4 |
import threading
|
|
|
|
|
|
|
5 |
from gradio_client import Client
|
6 |
+
from streamlit_audio_recorder import st_audiorec
|
7 |
|
8 |
+
# Initialize session state for chat history
|
9 |
if "messages" not in st.session_state:
|
10 |
st.session_state["messages"] = [] # Store chat history
|
11 |
|
12 |
+
# Load the ASR model using the Hugging Face transformers pipeline
|
13 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
14 |
+
|
15 |
# Function to generate a response using Gradio client
|
16 |
def generate_response(query):
|
17 |
try:
|
|
|
36 |
|
37 |
# Function to speak text (Voice Output)
|
38 |
def speak_text(text):
|
39 |
+
import pyttsx3
|
40 |
engine = pyttsx3.init()
|
41 |
engine.stop() # Ensure no previous loop is running
|
42 |
engine.say(text)
|
|
|
51 |
if "bot" in msg:
|
52 |
st.markdown(f"<div class='chat-bubble bot-message'><strong>Bot:</strong> {msg['bot']}</div>", unsafe_allow_html=True)
|
53 |
|
54 |
+
# Function to process and transcribe audio
|
55 |
+
def transcribe_audio(audio_data, sr):
|
56 |
+
# Normalize audio to float32
|
57 |
+
audio_data = audio_data.astype(np.float32)
|
58 |
+
audio_data /= np.max(np.abs(audio_data))
|
|
|
|
|
59 |
|
60 |
+
# Use the ASR model to transcribe the audio
|
61 |
+
transcription = transcriber({"sampling_rate": sr, "raw": audio_data})["text"]
|
62 |
+
return transcription
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
# Main Streamlit app
|
65 |
st.set_page_config(page_title="Llama2 Chatbot", page_icon="🤖", layout="wide")
|
|
|
118 |
"""
|
119 |
Welcome to the *Llama2 Chatbot*!
|
120 |
- *Type* your message below, or
|
121 |
+
- *Use the microphone* to speak to the bot.
|
122 |
"""
|
123 |
)
|
124 |
|
|
|
134 |
if submit_button:
|
135 |
handle_user_input(user_input)
|
136 |
|
137 |
+
# Separate button for speech recognition outside of the form
|
138 |
+
if st.button("Speak"):
|
139 |
+
# Record and process the speech using Streamlit Audio Recorder
|
140 |
+
audio_data, sr = st_audiorec()
|
141 |
+
|
142 |
+
if audio_data is not None:
|
143 |
+
st.audio(audio_data, format="audio/wav")
|
144 |
|
145 |
+
# Convert to numpy array
|
146 |
+
audio_np = np.array(audio_data)
|
147 |
|
148 |
+
# Transcribe the audio
|
149 |
+
transcription = transcribe_audio(audio_np, sr)
|
|
|
|
|
|
|
150 |
|
151 |
+
# Display the recognized text
|
152 |
+
st.session_state["user_input"] = transcription
|
153 |
+
st.success(f"Recognized Text: {transcription}")
|
154 |
+
handle_user_input(transcription)
|
155 |
+
|
156 |
+
st.markdown("### Chat History")
|
157 |
+
# Update chat history on every interaction
|
158 |
+
update_chat_history()
|