Spaces:
Sleeping
Sleeping
File size: 4,949 Bytes
9f50d19 2aeecdb 9f50d19 a6f2237 2aeecdb 9f50d19 2aeecdb 9f50d19 2aeecdb 9f50d19 2aeecdb 9f50d19 2aeecdb 7cde845 2aeecdb 9f50d19 65ea836 2aeecdb 9f50d19 2aeecdb 9f50d19 2aeecdb a999793 2aeecdb a999793 2aeecdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import streamlit as st
from transformers import pipeline
import numpy as np
import threading
from gradio_client import Client
from streamlit_audio_recorder import st_audiorec
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state["messages"] = [] # Store chat history
# Load the ASR model using the Hugging Face transformers pipeline
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
# Function to generate a response using Gradio client
def generate_response(query):
try:
client = Client("Gopikanth123/llama2")
result = client.predict(query=query, api_name="/predict")
return result
except Exception as e:
return f"Error communicating with the Gradio backend: {e}"
# Function to handle user input and bot response
def handle_user_input(user_input):
if user_input:
# Add user message to session state
st.session_state["messages"].append({"user": user_input})
# Generate bot response
response = generate_response(user_input)
st.session_state["messages"].append({"bot": response})
# Speak out bot response in a new thread to avoid blocking
threading.Thread(target=speak_text, args=(response,), daemon=True).start()
# Function to speak text (Voice Output)
def speak_text(text):
import pyttsx3
engine = pyttsx3.init()
engine.stop() # Ensure no previous loop is running
engine.say(text)
engine.runAndWait()
# Function to update chat history dynamically
def update_chat_history():
chat_history = st.session_state["messages"]
for msg in chat_history:
if "user" in msg:
st.markdown(f"<div class='chat-bubble user-message'><strong>You:</strong> {msg['user']}</div>", unsafe_allow_html=True)
if "bot" in msg:
st.markdown(f"<div class='chat-bubble bot-message'><strong>Bot:</strong> {msg['bot']}</div>", unsafe_allow_html=True)
# Function to process and transcribe audio
def transcribe_audio(audio_data, sr):
# Normalize audio to float32
audio_data = audio_data.astype(np.float32)
audio_data /= np.max(np.abs(audio_data))
# Use the ASR model to transcribe the audio
transcription = transcriber({"sampling_rate": sr, "raw": audio_data})["text"]
return transcription
# Main Streamlit app
st.set_page_config(page_title="Llama2 Chatbot", page_icon="🤖", layout="wide")
st.markdown(
"""
<style>
.stButton>button {
background-color: #6C63FF;
color: white;
font-size: 16px;
border-radius: 10px;
padding: 10px 20px;
}
.stTextInput>div>input {
border: 2px solid #6C63FF;
border-radius: 10px;
padding: 10px;
}
.chat-container {
background-color: #F7F9FC;
padding: 20px;
border-radius: 15px;
max-height: 400px;
overflow-y: auto;
}
.chat-bubble {
padding: 10px 15px;
border-radius: 15px;
margin: 5px 0;
max-width: 80%;
display: inline-block;
}
.user-message {
background-color: #D1C4E9;
text-align: left;
margin-left: auto;
}
.bot-message {
background-color: #BBDEFB;
text-align: left;
margin-right: auto;
}
.input-container {
display: flex;
justify-content: space-between;
gap: 10px;
padding: 10px 0;
}
</style>
""",
unsafe_allow_html=True
)
st.title("🤖 Chat with Llama2 Bot")
st.markdown(
"""
Welcome to the *Llama2 Chatbot*!
- *Type* your message below, or
- *Use the microphone* to speak to the bot.
"""
)
# Display chat history
chat_history_container = st.container()
with chat_history_container:
# Add input field within a form
with st.form(key='input_form', clear_on_submit=True):
user_input = st.text_input("Type your message here...", placeholder="Hello, how are you?")
submit_button = st.form_submit_button("Send")
# Handle form submission
if submit_button:
handle_user_input(user_input)
# Separate button for speech recognition outside of the form
if st.button("Speak"):
# Record and process the speech using Streamlit Audio Recorder
audio_data, sr = st_audiorec()
if audio_data is not None:
st.audio(audio_data, format="audio/wav")
# Convert to numpy array
audio_np = np.array(audio_data)
# Transcribe the audio
transcription = transcribe_audio(audio_np, sr)
# Display the recognized text
st.session_state["user_input"] = transcription
st.success(f"Recognized Text: {transcription}")
handle_user_input(transcription)
st.markdown("### Chat History")
# Update chat history on every interaction
update_chat_history()
|