Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,18 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import speech_recognition as sr
|
5 |
import pyttsx3
|
6 |
import threading
|
7 |
-
import
|
8 |
-
from gradio_client import Client
|
9 |
|
10 |
# Initialize session state
|
11 |
if "messages" not in st.session_state:
|
12 |
st.session_state["messages"] = [] # Store chat history
|
13 |
|
|
|
|
|
|
|
|
|
14 |
# Function to generate a response using Gradio client
|
15 |
def generate_response(query):
|
16 |
try:
|
@@ -33,9 +35,6 @@ def handle_user_input(user_input):
|
|
33 |
# Speak out bot response in a new thread to avoid blocking
|
34 |
threading.Thread(target=speak_text, args=(response,), daemon=True).start()
|
35 |
|
36 |
-
# Update chat history after each interaction
|
37 |
-
# update_chat_history()
|
38 |
-
|
39 |
# Function to speak text (Voice Output)
|
40 |
def speak_text(text):
|
41 |
engine = pyttsx3.init()
|
@@ -52,30 +51,34 @@ def update_chat_history():
|
|
52 |
if "bot" in msg:
|
53 |
st.markdown(f"<div class='chat-bubble bot-message'><strong>Bot:</strong> {msg['bot']}</div>", unsafe_allow_html=True)
|
54 |
|
55 |
-
# Function to recognize speech using
|
56 |
-
def
|
57 |
st.info("Listening... Speak into the microphone.")
|
58 |
fs = 16000 # Sample rate in Hz
|
59 |
duration = 5 # Duration in seconds
|
60 |
|
61 |
-
# Record the audio using sounddevice
|
|
|
62 |
audio_data = sd.rec(int(duration * fs), samplerate=fs, channels=1, dtype='int16')
|
63 |
sd.wait()
|
|
|
|
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
-
audio = sr.AudioData(audio_data.tobytes(), fs, 2)
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
st.error("Could not request results; please check your internet connection.")
|
78 |
|
|
|
|
|
|
|
79 |
|
80 |
# Main Streamlit app
|
81 |
st.set_page_config(page_title="Llama2 Chatbot", page_icon="🤖", layout="wide")
|
@@ -152,7 +155,7 @@ with chat_history_container:
|
|
152 |
|
153 |
# Separate button for speech recognition outside of the form
|
154 |
if st.button("Speak"):
|
155 |
-
|
156 |
|
157 |
st.markdown("### Chat History")
|
158 |
# Update chat history on every interaction
|
|
|
1 |
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import soundfile as sf
|
|
|
4 |
import pyttsx3
|
5 |
import threading
|
6 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
|
7 |
|
8 |
# Initialize session state
|
9 |
if "messages" not in st.session_state:
|
10 |
st.session_state["messages"] = [] # Store chat history
|
11 |
|
12 |
+
# Load the Wav2Vec 2.0 model and processor from Hugging Face
|
13 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h")
|
14 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h")
|
15 |
+
|
16 |
# Function to generate a response using Gradio client
|
17 |
def generate_response(query):
|
18 |
try:
|
|
|
35 |
# Speak out bot response in a new thread to avoid blocking
|
36 |
threading.Thread(target=speak_text, args=(response,), daemon=True).start()
|
37 |
|
|
|
|
|
|
|
38 |
# Function to speak text (Voice Output)
|
39 |
def speak_text(text):
|
40 |
engine = pyttsx3.init()
|
|
|
51 |
if "bot" in msg:
|
52 |
st.markdown(f"<div class='chat-bubble bot-message'><strong>Bot:</strong> {msg['bot']}</div>", unsafe_allow_html=True)
|
53 |
|
54 |
+
# Function to recognize speech using Hugging Face's Wav2Vec 2.0
|
55 |
+
def recognize_speech_huggingface():
|
56 |
st.info("Listening... Speak into the microphone.")
|
57 |
fs = 16000 # Sample rate in Hz
|
58 |
duration = 5 # Duration in seconds
|
59 |
|
60 |
+
# Record the audio using sounddevice or use a pre-recorded file
|
61 |
+
# (Here we're using soundfile to record from microphone)
|
62 |
audio_data = sd.rec(int(duration * fs), samplerate=fs, channels=1, dtype='int16')
|
63 |
sd.wait()
|
64 |
+
# Save the audio file to a temporary buffer
|
65 |
+
sf.write('audio.wav', audio_data, fs)
|
66 |
|
67 |
+
# Read the audio file using soundfile and process it
|
68 |
+
audio_input, _ = sf.read('audio.wav')
|
|
|
69 |
|
70 |
+
# Preprocess the audio and recognize the speech
|
71 |
+
inputs = processor(audio_input, return_tensors="pt", sampling_rate=fs)
|
72 |
+
with torch.no_grad():
|
73 |
+
logits = model(input_values=inputs.input_values).logits
|
74 |
+
|
75 |
+
# Decode the logits to text
|
76 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
77 |
+
recognized_text = processor.decode(predicted_ids[0])
|
|
|
78 |
|
79 |
+
st.session_state["user_input"] = recognized_text
|
80 |
+
st.success(f"Recognized Text: {recognized_text}")
|
81 |
+
handle_user_input(recognized_text)
|
82 |
|
83 |
# Main Streamlit app
|
84 |
st.set_page_config(page_title="Llama2 Chatbot", page_icon="🤖", layout="wide")
|
|
|
155 |
|
156 |
# Separate button for speech recognition outside of the form
|
157 |
if st.button("Speak"):
|
158 |
+
recognize_speech_huggingface()
|
159 |
|
160 |
st.markdown("### Chat History")
|
161 |
# Update chat history on every interaction
|