|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
from diffusers import StableDiffusionPipeline |
|
import torch |
|
import os |
|
import logging |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
read_token = os.getenv('AccToken') |
|
if not read_token: |
|
raise ValueError("Hugging Face access token not found. Please set the AccToken environment variable.") |
|
from huggingface_hub import login |
|
login(read_token) |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
logger.info(f"Device set to use {device}") |
|
|
|
|
|
conversational_models = { |
|
"Qwen": "Qwen/QwQ-32B", |
|
"DeepSeek R1": "deepseek-ai/DeepSeek-R1", |
|
"Perplexity (R1 Post-trained)": "perplexity-ai/r1-1776", |
|
"Llama-Instruct by Meta": "meta-llama/Llama-3.2-3B-Instruct", |
|
"Mistral": "mistralai/Mistral-7B-v0.1", |
|
"Gemma": "google/gemma-2-2b-it", |
|
} |
|
|
|
|
|
text_to_image_models = { |
|
"Stable Diffusion 3.5 Large": "stabilityai/stable-diffusion-3.5-large", |
|
"Stable Diffusion 1.4": "CompVis/stable-diffusion-v1-4", |
|
"Flux Dev": "black-forest-labs/FLUX.1-dev", |
|
} |
|
|
|
|
|
text_to_speech_models = { |
|
"Spark TTS": "SparkAudio/Spark-TTS-0.5B", |
|
} |
|
|
|
|
|
conversational_tokenizers = {} |
|
conversational_models_loaded = {} |
|
|
|
|
|
text_to_image_pipelines = {} |
|
|
|
|
|
text_to_speech_pipelines = {} |
|
|
|
|
|
visual_qa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa", device=device) |
|
document_qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2", device=device) |
|
image_classification_pipeline = pipeline("image-classification", model="facebook/deit-base-distilled-patch16-224", device=device) |
|
object_detection_pipeline = pipeline("object-detection", model="facebook/detr-resnet-50", device=device) |
|
video_classification_pipeline = pipeline("video-classification", model="facebook/timesformer-base-finetuned-k400", device=device) |
|
summarization_pipeline = pipeline("summarization", model="facebook/bart-large-cnn", device=device) |
|
|
|
|
|
def load_speaker_embeddings(model_name): |
|
if model_name == "microsoft/speecht5_tts": |
|
logger.info("Loading speaker embeddings for SpeechT5") |
|
from datasets import load_dataset |
|
dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") |
|
speaker_embeddings = torch.tensor(dataset[7306]["xvector"]).unsqueeze(0).to(device) |
|
return speaker_embeddings |
|
return None |
|
|
|
|
|
try: |
|
text_to_audio_pipeline = pipeline("text-to-audio", model="stabilityai/stable-audio-open-1.0", device=device) |
|
except ValueError as e: |
|
logger.error(f"Error loading stabilityai/stable-audio-open-1.0: {e}") |
|
logger.info("Falling back to a different text-to-audio model.") |
|
text_to_audio_pipeline = pipeline("text-to-audio", model="microsoft/speecht5_tts", device=device) |
|
speaker_embeddings = load_speaker_embeddings("microsoft/speecht5_tts") |
|
|
|
audio_classification_pipeline = pipeline("audio-classification", model="facebook/wav2vec2-base", device=device) |
|
|
|
def load_conversational_model(model_name): |
|
if model_name not in conversational_models_loaded: |
|
logger.info(f"Loading conversational model: {model_name}") |
|
tokenizer = AutoTokenizer.from_pretrained(conversational_models[model_name], use_auth_token=read_token) |
|
model = AutoModelForCausalLM.from_pretrained(conversational_models[model_name], use_auth_token=read_token).to(device) |
|
conversational_tokenizers[model_name] = tokenizer |
|
conversational_models_loaded[model_name] = model |
|
return conversational_tokenizers[model_name], conversational_models_loaded[model_name] |
|
|
|
def chat(model_name, user_input, history=[]): |
|
tokenizer, model = load_conversational_model(model_name) |
|
|
|
|
|
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt").to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
output = model.generate(input_ids, max_length=150, pad_token_id=tokenizer.eos_token_id) |
|
|
|
response = tokenizer.decode(output[0], skip_special_tokens=True) |
|
|
|
|
|
response = response[len(user_input):].strip() |
|
|
|
|
|
history.append((user_input, response)) |
|
|
|
return history, history |
|
|
|
def generate_image(model_name, prompt): |
|
if model_name not in text_to_image_pipelines: |
|
logger.info(f"Loading text-to-image model: {model_name}") |
|
text_to_image_pipelines[model_name] = StableDiffusionPipeline.from_pretrained( |
|
text_to_image_models[model_name], use_auth_token=read_token, torch_dtype=torch.float16, device_map="auto" |
|
) |
|
pipeline = text_to_image_pipelines[model_name] |
|
image = pipeline(prompt).images[0] |
|
return image |
|
|
|
def generate_speech(model_name, text): |
|
if model_name not in text_to_speech_pipelines: |
|
logger.info(f"Loading text-to-speech model: {model_name}") |
|
text_to_speech_pipelines[model_name] = pipeline( |
|
"text-to-speech", model=text_to_speech_models[model_name], use_auth_token=read_token, device=device |
|
) |
|
pipeline = text_to_speech_pipelines[model_name] |
|
audio = pipeline(text, speaker_embeddings=speaker_embeddings) |
|
return audio["audio"] |
|
|
|
|
|
|
|
def visual_qa(image, question): |
|
result = visual_qa_pipeline(image, question) |
|
return result["answer"] |
|
|
|
def document_qa(document, question): |
|
result = document_qa_pipeline(question=question, context=document) |
|
return result["answer"] |
|
|
|
def image_classification(image): |
|
result = image_classification_pipeline(image) |
|
return result |
|
|
|
def object_detection(image): |
|
result = object_detection_pipeline(image) |
|
return result |
|
|
|
def video_classification(video): |
|
result = video_classification_pipeline(video) |
|
return result |
|
|
|
def summarize_text(text): |
|
result = summarization_pipeline(text) |
|
return result[0]["summary_text"] |
|
|
|
def text_to_audio(text): |
|
global speaker_embeddings |
|
result = text_to_audio_pipeline(text, speaker_embeddings=speaker_embeddings) |
|
return result["audio"] |
|
|
|
def audio_classification(audio): |
|
result = audio_classification_pipeline(audio) |
|
return result |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## Versatile AI Chatbot and Text-to-X Tasks") |
|
|
|
with gr.Tab("Conversational AI"): |
|
conversational_model_choice = gr.Dropdown(list(conversational_models.keys()), label="Choose a Conversational Model") |
|
conversational_chatbot = gr.Chatbot(label="Chat") |
|
conversational_message = gr.Textbox(label="Message") |
|
conversational_submit = gr.Button("Submit") |
|
|
|
conversational_submit.click(chat, inputs=[conversational_model_choice, conversational_message, conversational_chatbot], outputs=[conversational_chatbot, conversational_chatbot]) |
|
conversational_message.submit(chat, inputs=[conversational_model_choice, conversational_message, conversational_chatbot], outputs=[conversational_chatbot, conversational_chatbot]) |
|
|
|
with gr.Tab("Text-to-Image"): |
|
text_to_image_model_choice = gr.Dropdown(list(text_to_image_models.keys()), label="Choose a Text-to-Image Model") |
|
text_to_image_prompt = gr.Textbox(label="Prompt") |
|
text_to_image_generate = gr.Button("Generate Image") |
|
text_to_image_output = gr.Image(label="Generated Image") |
|
|
|
text_to_image_generate.click(generate_image, inputs=[text_to_image_model_choice, text_to_image_prompt], outputs=text_to_image_output) |
|
|
|
with gr.Tab("Text-to-Speech"): |
|
text_to_speech_model_choice = gr.Dropdown(list(text_to_speech_models.keys()), label="Choose a Text-to-Speech Model") |
|
text_to_speech_text = gr.Textbox(label="Text") |
|
text_to_speech_generate = gr.Button("Generate Speech") |
|
text_to_speech_output = gr.Audio(label="Generated Speech") |
|
|
|
text_to_speech_generate.click(generate_speech, inputs=[text_to_speech_model_choice, text_to_speech_text], outputs=text_to_speech_output) |
|
|
|
with gr.Tab("Visual Question Answering"): |
|
visual_qa_image = gr.Image(label="Upload Image") |
|
visual_qa_question = gr.Textbox(label="Question") |
|
visual_qa_generate = gr.Button("Answer") |
|
visual_qa_output = gr.Textbox(label="Answer") |
|
|
|
visual_qa_generate.click(visual_qa, inputs=[visual_qa_image, visual_qa_question], outputs=visual_qa_output) |
|
|
|
with gr.Tab("Document Question Answering"): |
|
document_qa_document = gr.Textbox(label="Document Text") |
|
document_qa_question = gr.Textbox(label="Question") |
|
document_qa_generate = gr.Button("Answer") |
|
document_qa_output = gr.Textbox(label="Answer") |
|
|
|
document_qa_generate.click(document_qa, inputs=[document_qa_document, document_qa_question], outputs=document_qa_output) |
|
|
|
with gr.Tab("Image Classification"): |
|
image_classification_image = gr.Image(label="Upload Image") |
|
image_classification_generate = gr.Button("Classify") |
|
image_classification_output = gr.Textbox(label="Classification Result") |
|
|
|
image_classification_generate.click(image_classification, inputs=image_classification_image, outputs=image_classification_output) |
|
|
|
with gr.Tab("Object Detection"): |
|
object_detection_image = gr.Image(label="Upload Image") |
|
object_detection_generate = gr.Button("Detect") |
|
object_detection_output = gr.Image(label="Detection Result") |
|
|
|
object_detection_generate.click(object_detection, inputs=object_detection_image, outputs=object_detection_output) |
|
|
|
with gr.Tab("Video Classification"): |
|
video_classification_video = gr.Video(label="Upload Video") |
|
video_classification_generate = gr.Button("Classify") |
|
video_classification_output = gr.Textbox(label="Classification Result") |
|
|
|
video_classification_generate.click(video_classification, inputs=video_classification_video, outputs=video_classification_output) |
|
|
|
with gr.Tab("Summarization"): |
|
summarize_text_text = gr.Textbox(label="Text") |
|
summarize_text_generate = gr.Button("Summarize") |
|
summarize_text_output = gr.Textbox(label="Summary") |
|
|
|
summarize_text_generate.click(summarize_text, inputs=summarize_text_text, outputs=summarize_text_output) |
|
|
|
with gr.Tab("Text-to-Audio"): |
|
text_to_audio_text = gr.Textbox(label="Text") |
|
text_to_audio_generate = gr.Button("Generate Audio") |
|
text_to_audio_output = gr.Audio(label="Generated Audio") |
|
|
|
text_to_audio_generate.click(text_to_audio, inputs=text_to_audio_text, outputs=text_to_audio_output) |
|
|
|
with gr.Tab("Audio Classification"): |
|
audio_classification_audio = gr.Audio(label="Upload Audio") |
|
audio_classification_generate = gr.Button("Classify") |
|
audio_classification_output = gr.Textbox(label="Classification Result") |
|
|
|
audio_classification_generate.click(audio_classification, inputs=audio_classification_audio, outputs=audio_classification_output) |
|
|
|
|
|
demo.launch() |