File size: 11,696 Bytes
f539d74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from diffusers import StableDiffusionPipeline
import torch
import os
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Read the Hugging Face access token from the environment variable
read_token = os.getenv('AccToken')
if not read_token:
raise ValueError("Hugging Face access token not found. Please set the AccToken environment variable.")
from huggingface_hub import login
login(read_token)
# Set device to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Device set to use {device}")
# Define a dictionary of conversational models
conversational_models = {
"Qwen": "Qwen/QwQ-32B",
"DeepSeek R1": "deepseek-ai/DeepSeek-R1",
"Perplexity (R1 Post-trained)": "perplexity-ai/r1-1776",
"Llama-Instruct by Meta": "meta-llama/Llama-3.2-3B-Instruct",
"Mistral": "mistralai/Mistral-7B-v0.1",
"Gemma": "google/gemma-2-2b-it",
}
# Define a dictionary of Text-to-Image models
text_to_image_models = {
"Stable Diffusion 3.5 Large": "stabilityai/stable-diffusion-3.5-large",
"Stable Diffusion 1.4": "CompVis/stable-diffusion-v1-4",
"Flux Dev": "black-forest-labs/FLUX.1-dev",
}
# Define a dictionary of Text-to-Speech models
text_to_speech_models = {
"Spark TTS": "SparkAudio/Spark-TTS-0.5B",
}
# Initialize tokenizers and models for conversational AI
conversational_tokenizers = {}
conversational_models_loaded = {}
# Initialize pipelines for Text-to-Image
text_to_image_pipelines = {}
# Initialize pipelines for Text-to-Speech
text_to_speech_pipelines = {}
# Initialize pipelines for other tasks
visual_qa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa", device=device)
document_qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2", device=device)
image_classification_pipeline = pipeline("image-classification", model="facebook/deit-base-distilled-patch16-224", device=device)
object_detection_pipeline = pipeline("object-detection", model="facebook/detr-resnet-50", device=device)
video_classification_pipeline = pipeline("video-classification", model="facebook/timesformer-base-finetuned-k400", device=device)
summarization_pipeline = pipeline("summarization", model="facebook/bart-large-cnn", device=device)
# Load speaker embeddings for text-to-audio
def load_speaker_embeddings(model_name):
if model_name == "microsoft/speecht5_tts":
logger.info("Loading speaker embeddings for SpeechT5")
from datasets import load_dataset
dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(dataset[7306]["xvector"]).unsqueeze(0).to(device) # Example speaker
return speaker_embeddings
return None
# Use a different model for text-to-audio if stabilityai/stable-audio-open-1.0 is not supported
try:
text_to_audio_pipeline = pipeline("text-to-audio", model="stabilityai/stable-audio-open-1.0", device=device)
except ValueError as e:
logger.error(f"Error loading stabilityai/stable-audio-open-1.0: {e}")
logger.info("Falling back to a different text-to-audio model.")
text_to_audio_pipeline = pipeline("text-to-audio", model="microsoft/speecht5_tts", device=device)
speaker_embeddings = load_speaker_embeddings("microsoft/speecht5_tts")
audio_classification_pipeline = pipeline("audio-classification", model="facebook/wav2vec2-base", device=device)
def load_conversational_model(model_name):
if model_name not in conversational_models_loaded:
logger.info(f"Loading conversational model: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(conversational_models[model_name], use_auth_token=read_token)
model = AutoModelForCausalLM.from_pretrained(conversational_models[model_name], use_auth_token=read_token).to(device)
conversational_tokenizers[model_name] = tokenizer
conversational_models_loaded[model_name] = model
return conversational_tokenizers[model_name], conversational_models_loaded[model_name]
def chat(model_name, user_input, history=[]):
tokenizer, model = load_conversational_model(model_name)
# Encode the input
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt").to(device)
# Generate a response
with torch.no_grad():
output = model.generate(input_ids, max_length=150, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(output[0], skip_special_tokens=True)
# Clean up the response to remove the user input part
response = response[len(user_input):].strip()
# Append to chat history
history.append((user_input, response))
return history, history
def generate_image(model_name, prompt):
if model_name not in text_to_image_pipelines:
logger.info(f"Loading text-to-image model: {model_name}")
text_to_image_pipelines[model_name] = StableDiffusionPipeline.from_pretrained(
text_to_image_models[model_name], use_auth_token=read_token, torch_dtype=torch.float16, device_map="auto"
)
pipeline = text_to_image_pipelines[model_name]
image = pipeline(prompt).images[0]
return image
def generate_speech(model_name, text):
if model_name not in text_to_speech_pipelines:
logger.info(f"Loading text-to-speech model: {model_name}")
text_to_speech_pipelines[model_name] = pipeline(
"text-to-speech", model=text_to_speech_models[model_name], use_auth_token=read_token, device=device
)
pipeline = text_to_speech_pipelines[model_name]
audio = pipeline(text, speaker_embeddings=speaker_embeddings)
return audio["audio"]
def visual_qa(image, question):
result = visual_qa_pipeline(image, question)
return result["answer"]
def document_qa(document, question):
result = document_qa_pipeline(question=question, context=document)
return result["answer"]
def image_classification(image):
result = image_classification_pipeline(image)
return result
def object_detection(image):
result = object_detection_pipeline(image)
return result
def video_classification(video):
result = video_classification_pipeline(video)
return result
def summarize_text(text):
result = summarization_pipeline(text)
return result[0]["summary_text"]
def text_to_audio(text):
global speaker_embeddings
result = text_to_audio_pipeline(text, speaker_embeddings=speaker_embeddings)
return result["audio"]
def audio_classification(audio):
result = audio_classification_pipeline(audio)
return result
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Versatile AI Chatbot and Text-to-X Tasks")
with gr.Tab("Conversational AI"):
conversational_model_choice = gr.Dropdown(list(conversational_models.keys()), label="Choose a Conversational Model")
conversational_chatbot = gr.Chatbot(label="Chat")
conversational_message = gr.Textbox(label="Message")
conversational_submit = gr.Button("Submit")
conversational_submit.click(chat, inputs=[conversational_model_choice, conversational_message, conversational_chatbot], outputs=[conversational_chatbot, conversational_chatbot])
conversational_message.submit(chat, inputs=[conversational_model_choice, conversational_message, conversational_chatbot], outputs=[conversational_chatbot, conversational_chatbot])
with gr.Tab("Text-to-Image"):
text_to_image_model_choice = gr.Dropdown(list(text_to_image_models.keys()), label="Choose a Text-to-Image Model")
text_to_image_prompt = gr.Textbox(label="Prompt")
text_to_image_generate = gr.Button("Generate Image")
text_to_image_output = gr.Image(label="Generated Image")
text_to_image_generate.click(generate_image, inputs=[text_to_image_model_choice, text_to_image_prompt], outputs=text_to_image_output)
with gr.Tab("Text-to-Speech"):
text_to_speech_model_choice = gr.Dropdown(list(text_to_speech_models.keys()), label="Choose a Text-to-Speech Model")
text_to_speech_text = gr.Textbox(label="Text")
text_to_speech_generate = gr.Button("Generate Speech")
text_to_speech_output = gr.Audio(label="Generated Speech")
text_to_speech_generate.click(generate_speech, inputs=[text_to_speech_model_choice, text_to_speech_text], outputs=text_to_speech_output)
with gr.Tab("Visual Question Answering"):
visual_qa_image = gr.Image(label="Upload Image")
visual_qa_question = gr.Textbox(label="Question")
visual_qa_generate = gr.Button("Answer")
visual_qa_output = gr.Textbox(label="Answer")
visual_qa_generate.click(visual_qa, inputs=[visual_qa_image, visual_qa_question], outputs=visual_qa_output)
with gr.Tab("Document Question Answering"):
document_qa_document = gr.Textbox(label="Document Text")
document_qa_question = gr.Textbox(label="Question")
document_qa_generate = gr.Button("Answer")
document_qa_output = gr.Textbox(label="Answer")
document_qa_generate.click(document_qa, inputs=[document_qa_document, document_qa_question], outputs=document_qa_output)
with gr.Tab("Image Classification"):
image_classification_image = gr.Image(label="Upload Image")
image_classification_generate = gr.Button("Classify")
image_classification_output = gr.Textbox(label="Classification Result")
image_classification_generate.click(image_classification, inputs=image_classification_image, outputs=image_classification_output)
with gr.Tab("Object Detection"):
object_detection_image = gr.Image(label="Upload Image")
object_detection_generate = gr.Button("Detect")
object_detection_output = gr.Image(label="Detection Result")
object_detection_generate.click(object_detection, inputs=object_detection_image, outputs=object_detection_output)
with gr.Tab("Video Classification"):
video_classification_video = gr.Video(label="Upload Video")
video_classification_generate = gr.Button("Classify")
video_classification_output = gr.Textbox(label="Classification Result")
video_classification_generate.click(video_classification, inputs=video_classification_video, outputs=video_classification_output)
with gr.Tab("Summarization"):
summarize_text_text = gr.Textbox(label="Text")
summarize_text_generate = gr.Button("Summarize")
summarize_text_output = gr.Textbox(label="Summary")
summarize_text_generate.click(summarize_text, inputs=summarize_text_text, outputs=summarize_text_output)
with gr.Tab("Text-to-Audio"):
text_to_audio_text = gr.Textbox(label="Text")
text_to_audio_generate = gr.Button("Generate Audio")
text_to_audio_output = gr.Audio(label="Generated Audio")
text_to_audio_generate.click(text_to_audio, inputs=text_to_audio_text, outputs=text_to_audio_output)
with gr.Tab("Audio Classification"):
audio_classification_audio = gr.Audio(label="Upload Audio")
audio_classification_generate = gr.Button("Classify")
audio_classification_output = gr.Textbox(label="Classification Result")
audio_classification_generate.click(audio_classification, inputs=audio_classification_audio, outputs=audio_classification_output)
# Launch the Gradio interface
demo.launch() |