BarBar288 commited on
Commit
f539d74
·
verified ·
1 Parent(s): 90a49ef

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +256 -0
app.py ADDED
@@ -0,0 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
3
+ from diffusers import StableDiffusionPipeline
4
+ import torch
5
+ import os
6
+ import logging
7
+
8
+ # Set up logging
9
+ logging.basicConfig(level=logging.INFO)
10
+ logger = logging.getLogger(__name__)
11
+
12
+ # Read the Hugging Face access token from the environment variable
13
+ read_token = os.getenv('AccToken')
14
+ if not read_token:
15
+ raise ValueError("Hugging Face access token not found. Please set the AccToken environment variable.")
16
+ from huggingface_hub import login
17
+ login(read_token)
18
+
19
+ # Set device to GPU if available
20
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
21
+ logger.info(f"Device set to use {device}")
22
+
23
+ # Define a dictionary of conversational models
24
+ conversational_models = {
25
+ "Qwen": "Qwen/QwQ-32B",
26
+ "DeepSeek R1": "deepseek-ai/DeepSeek-R1",
27
+ "Perplexity (R1 Post-trained)": "perplexity-ai/r1-1776",
28
+ "Llama-Instruct by Meta": "meta-llama/Llama-3.2-3B-Instruct",
29
+ "Mistral": "mistralai/Mistral-7B-v0.1",
30
+ "Gemma": "google/gemma-2-2b-it",
31
+ }
32
+
33
+ # Define a dictionary of Text-to-Image models
34
+ text_to_image_models = {
35
+ "Stable Diffusion 3.5 Large": "stabilityai/stable-diffusion-3.5-large",
36
+ "Stable Diffusion 1.4": "CompVis/stable-diffusion-v1-4",
37
+ "Flux Dev": "black-forest-labs/FLUX.1-dev",
38
+ }
39
+
40
+ # Define a dictionary of Text-to-Speech models
41
+ text_to_speech_models = {
42
+ "Spark TTS": "SparkAudio/Spark-TTS-0.5B",
43
+ }
44
+
45
+ # Initialize tokenizers and models for conversational AI
46
+ conversational_tokenizers = {}
47
+ conversational_models_loaded = {}
48
+
49
+ # Initialize pipelines for Text-to-Image
50
+ text_to_image_pipelines = {}
51
+
52
+ # Initialize pipelines for Text-to-Speech
53
+ text_to_speech_pipelines = {}
54
+
55
+ # Initialize pipelines for other tasks
56
+ visual_qa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa", device=device)
57
+ document_qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2", device=device)
58
+ image_classification_pipeline = pipeline("image-classification", model="facebook/deit-base-distilled-patch16-224", device=device)
59
+ object_detection_pipeline = pipeline("object-detection", model="facebook/detr-resnet-50", device=device)
60
+ video_classification_pipeline = pipeline("video-classification", model="facebook/timesformer-base-finetuned-k400", device=device)
61
+ summarization_pipeline = pipeline("summarization", model="facebook/bart-large-cnn", device=device)
62
+
63
+ # Load speaker embeddings for text-to-audio
64
+ def load_speaker_embeddings(model_name):
65
+ if model_name == "microsoft/speecht5_tts":
66
+ logger.info("Loading speaker embeddings for SpeechT5")
67
+ from datasets import load_dataset
68
+ dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
69
+ speaker_embeddings = torch.tensor(dataset[7306]["xvector"]).unsqueeze(0).to(device) # Example speaker
70
+ return speaker_embeddings
71
+ return None
72
+
73
+ # Use a different model for text-to-audio if stabilityai/stable-audio-open-1.0 is not supported
74
+ try:
75
+ text_to_audio_pipeline = pipeline("text-to-audio", model="stabilityai/stable-audio-open-1.0", device=device)
76
+ except ValueError as e:
77
+ logger.error(f"Error loading stabilityai/stable-audio-open-1.0: {e}")
78
+ logger.info("Falling back to a different text-to-audio model.")
79
+ text_to_audio_pipeline = pipeline("text-to-audio", model="microsoft/speecht5_tts", device=device)
80
+ speaker_embeddings = load_speaker_embeddings("microsoft/speecht5_tts")
81
+
82
+ audio_classification_pipeline = pipeline("audio-classification", model="facebook/wav2vec2-base", device=device)
83
+
84
+ def load_conversational_model(model_name):
85
+ if model_name not in conversational_models_loaded:
86
+ logger.info(f"Loading conversational model: {model_name}")
87
+ tokenizer = AutoTokenizer.from_pretrained(conversational_models[model_name], use_auth_token=read_token)
88
+ model = AutoModelForCausalLM.from_pretrained(conversational_models[model_name], use_auth_token=read_token).to(device)
89
+ conversational_tokenizers[model_name] = tokenizer
90
+ conversational_models_loaded[model_name] = model
91
+ return conversational_tokenizers[model_name], conversational_models_loaded[model_name]
92
+
93
+ def chat(model_name, user_input, history=[]):
94
+ tokenizer, model = load_conversational_model(model_name)
95
+
96
+ # Encode the input
97
+ input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt").to(device)
98
+
99
+ # Generate a response
100
+ with torch.no_grad():
101
+ output = model.generate(input_ids, max_length=150, pad_token_id=tokenizer.eos_token_id)
102
+
103
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
104
+
105
+ # Clean up the response to remove the user input part
106
+ response = response[len(user_input):].strip()
107
+
108
+ # Append to chat history
109
+ history.append((user_input, response))
110
+
111
+ return history, history
112
+
113
+ def generate_image(model_name, prompt):
114
+ if model_name not in text_to_image_pipelines:
115
+ logger.info(f"Loading text-to-image model: {model_name}")
116
+ text_to_image_pipelines[model_name] = StableDiffusionPipeline.from_pretrained(
117
+ text_to_image_models[model_name], use_auth_token=read_token, torch_dtype=torch.float16, device_map="auto"
118
+ )
119
+ pipeline = text_to_image_pipelines[model_name]
120
+ image = pipeline(prompt).images[0]
121
+ return image
122
+
123
+ def generate_speech(model_name, text):
124
+ if model_name not in text_to_speech_pipelines:
125
+ logger.info(f"Loading text-to-speech model: {model_name}")
126
+ text_to_speech_pipelines[model_name] = pipeline(
127
+ "text-to-speech", model=text_to_speech_models[model_name], use_auth_token=read_token, device=device
128
+ )
129
+ pipeline = text_to_speech_pipelines[model_name]
130
+ audio = pipeline(text, speaker_embeddings=speaker_embeddings)
131
+ return audio["audio"]
132
+
133
+
134
+
135
+ def visual_qa(image, question):
136
+ result = visual_qa_pipeline(image, question)
137
+ return result["answer"]
138
+
139
+ def document_qa(document, question):
140
+ result = document_qa_pipeline(question=question, context=document)
141
+ return result["answer"]
142
+
143
+ def image_classification(image):
144
+ result = image_classification_pipeline(image)
145
+ return result
146
+
147
+ def object_detection(image):
148
+ result = object_detection_pipeline(image)
149
+ return result
150
+
151
+ def video_classification(video):
152
+ result = video_classification_pipeline(video)
153
+ return result
154
+
155
+ def summarize_text(text):
156
+ result = summarization_pipeline(text)
157
+ return result[0]["summary_text"]
158
+
159
+ def text_to_audio(text):
160
+ global speaker_embeddings
161
+ result = text_to_audio_pipeline(text, speaker_embeddings=speaker_embeddings)
162
+ return result["audio"]
163
+
164
+ def audio_classification(audio):
165
+ result = audio_classification_pipeline(audio)
166
+ return result
167
+
168
+ # Define the Gradio interface
169
+ with gr.Blocks() as demo:
170
+ gr.Markdown("## Versatile AI Chatbot and Text-to-X Tasks")
171
+
172
+ with gr.Tab("Conversational AI"):
173
+ conversational_model_choice = gr.Dropdown(list(conversational_models.keys()), label="Choose a Conversational Model")
174
+ conversational_chatbot = gr.Chatbot(label="Chat")
175
+ conversational_message = gr.Textbox(label="Message")
176
+ conversational_submit = gr.Button("Submit")
177
+
178
+ conversational_submit.click(chat, inputs=[conversational_model_choice, conversational_message, conversational_chatbot], outputs=[conversational_chatbot, conversational_chatbot])
179
+ conversational_message.submit(chat, inputs=[conversational_model_choice, conversational_message, conversational_chatbot], outputs=[conversational_chatbot, conversational_chatbot])
180
+
181
+ with gr.Tab("Text-to-Image"):
182
+ text_to_image_model_choice = gr.Dropdown(list(text_to_image_models.keys()), label="Choose a Text-to-Image Model")
183
+ text_to_image_prompt = gr.Textbox(label="Prompt")
184
+ text_to_image_generate = gr.Button("Generate Image")
185
+ text_to_image_output = gr.Image(label="Generated Image")
186
+
187
+ text_to_image_generate.click(generate_image, inputs=[text_to_image_model_choice, text_to_image_prompt], outputs=text_to_image_output)
188
+
189
+ with gr.Tab("Text-to-Speech"):
190
+ text_to_speech_model_choice = gr.Dropdown(list(text_to_speech_models.keys()), label="Choose a Text-to-Speech Model")
191
+ text_to_speech_text = gr.Textbox(label="Text")
192
+ text_to_speech_generate = gr.Button("Generate Speech")
193
+ text_to_speech_output = gr.Audio(label="Generated Speech")
194
+
195
+ text_to_speech_generate.click(generate_speech, inputs=[text_to_speech_model_choice, text_to_speech_text], outputs=text_to_speech_output)
196
+
197
+ with gr.Tab("Visual Question Answering"):
198
+ visual_qa_image = gr.Image(label="Upload Image")
199
+ visual_qa_question = gr.Textbox(label="Question")
200
+ visual_qa_generate = gr.Button("Answer")
201
+ visual_qa_output = gr.Textbox(label="Answer")
202
+
203
+ visual_qa_generate.click(visual_qa, inputs=[visual_qa_image, visual_qa_question], outputs=visual_qa_output)
204
+
205
+ with gr.Tab("Document Question Answering"):
206
+ document_qa_document = gr.Textbox(label="Document Text")
207
+ document_qa_question = gr.Textbox(label="Question")
208
+ document_qa_generate = gr.Button("Answer")
209
+ document_qa_output = gr.Textbox(label="Answer")
210
+
211
+ document_qa_generate.click(document_qa, inputs=[document_qa_document, document_qa_question], outputs=document_qa_output)
212
+
213
+ with gr.Tab("Image Classification"):
214
+ image_classification_image = gr.Image(label="Upload Image")
215
+ image_classification_generate = gr.Button("Classify")
216
+ image_classification_output = gr.Textbox(label="Classification Result")
217
+
218
+ image_classification_generate.click(image_classification, inputs=image_classification_image, outputs=image_classification_output)
219
+
220
+ with gr.Tab("Object Detection"):
221
+ object_detection_image = gr.Image(label="Upload Image")
222
+ object_detection_generate = gr.Button("Detect")
223
+ object_detection_output = gr.Image(label="Detection Result")
224
+
225
+ object_detection_generate.click(object_detection, inputs=object_detection_image, outputs=object_detection_output)
226
+
227
+ with gr.Tab("Video Classification"):
228
+ video_classification_video = gr.Video(label="Upload Video")
229
+ video_classification_generate = gr.Button("Classify")
230
+ video_classification_output = gr.Textbox(label="Classification Result")
231
+
232
+ video_classification_generate.click(video_classification, inputs=video_classification_video, outputs=video_classification_output)
233
+
234
+ with gr.Tab("Summarization"):
235
+ summarize_text_text = gr.Textbox(label="Text")
236
+ summarize_text_generate = gr.Button("Summarize")
237
+ summarize_text_output = gr.Textbox(label="Summary")
238
+
239
+ summarize_text_generate.click(summarize_text, inputs=summarize_text_text, outputs=summarize_text_output)
240
+
241
+ with gr.Tab("Text-to-Audio"):
242
+ text_to_audio_text = gr.Textbox(label="Text")
243
+ text_to_audio_generate = gr.Button("Generate Audio")
244
+ text_to_audio_output = gr.Audio(label="Generated Audio")
245
+
246
+ text_to_audio_generate.click(text_to_audio, inputs=text_to_audio_text, outputs=text_to_audio_output)
247
+
248
+ with gr.Tab("Audio Classification"):
249
+ audio_classification_audio = gr.Audio(label="Upload Audio")
250
+ audio_classification_generate = gr.Button("Classify")
251
+ audio_classification_output = gr.Textbox(label="Classification Result")
252
+
253
+ audio_classification_generate.click(audio_classification, inputs=audio_classification_audio, outputs=audio_classification_output)
254
+
255
+ # Launch the Gradio interface
256
+ demo.launch()