title: Htrflow Mcp
emoji: 🔥
colorFrom: green
colorTo: gray
sdk: gradio
sdk_version: 5.33.0
app_file: app.py
tags:
- mcp-server-track
- htrflow
- htr
- ocr
- api
pinned: false
license: apache-2.0
short_description: Image to text, alto- or page-xml
Video showcase:
MCP tooling
- htr_text: Extract plain text from handwritten documents
Parameters: image_path (string), document_type (string, default: "letter_swedish"), custom_settings (optional JSON string) Returns: Extracted text as string
- htrflow_file: Process HTR and return formatted files
Parameters: image_path (string), document_type (string), output_format (string, default: "alto"), custom_settings (optional JSON), server_name (string) Returns: Downloadable file in specified format Supported formats: txt, alto, page, json
- htrflow_visualizer: Visualize HTR results on original image
Parameters: image_path (string), htr_document_path (string), server_name (string) Returns: Visualization image with text regions highlighted
Claude Desktop
{
"mcpServers": {
"htrflow": {
"command": "npx",
"args": [
"mcp-remote",
"https://[YOUR-USERNAME].hf.space/gradio_api/mcp/sse",
"--transport",
"sse-only"
]
}
}
}
Usage Examples
- Can you extract the text from this handwritten Swedish letter? [upload image]
- Process this handwritten document and return the results in ALTO XML format for archival purposes.
- Show me the HTR results overlaid on the original image so I can see how accurate the text detection was.
Standard Letter Processing
Segmentation: Detect text lines using YOLO Text Recognition: Extract text using TrOCR Line Ordering: Organize text in reading order
Spread Processing
Region Segmentation: Detect page regions Line Segmentation: Detect text lines within regions Text Recognition: Extract text using TrOCR Reading Order: Handle marginalia and two-page layout
Custom Settings You can provide custom pipeline settings as JSON:
{
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {
"model": "Riksarkivet/yolov9-lines-within-regions-1"
},
"generation_settings": {"batch_size": 8}
}
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {
"model": "microsoft/trocr-base-handwritten"
},
"generation_settings": {"batch_size": 16}
}
}
]
}
Not enough time but would also integrate the iiif part aswell: https://github.com/AI-Riksarkivet/oxenstierna https://huggingface.co/collections/Riksarkivet/mcps-68447208f9eddd623a83fbc9