File size: 15,835 Bytes
cfb37bf
fb3185e
 
 
 
 
 
 
 
1ec4316
f094617
 
fb3185e
 
cfb37bf
fb3185e
 
 
 
 
 
 
f094617
fb3185e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f094617
fb3185e
 
 
 
 
 
 
f094617
fb3185e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f094617
fb3185e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f094617
fb3185e
 
 
 
 
 
 
f094617
fb3185e
 
 
 
 
 
 
 
 
f094617
 
fb3185e
 
 
 
 
 
 
 
 
 
 
 
 
f094617
fb3185e
 
 
 
 
 
 
 
 
 
 
f094617
 
fb3185e
f094617
fb3185e
 
 
 
 
 
 
 
 
 
 
 
 
f094617
fb3185e
 
 
 
 
 
 
 
f094617
fb3185e
f094617
 
fb3185e
 
f094617
fb3185e
 
 
 
 
 
 
f094617
fb3185e
 
 
 
 
 
 
 
 
 
 
 
 
f094617
fb3185e
 
f094617
fb3185e
f094617
 
fb3185e
 
f094617
 
 
 
 
 
fb3185e
f094617
 
 
 
fb3185e
f094617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb3185e
f094617
 
 
 
 
 
 
 
 
 
 
 
 
fb3185e
f094617
fb3185e
f094617
 
fb3185e
 
f094617
 
 
 
 
 
 
 
 
 
fb3185e
 
f094617
 
fb3185e
 
f094617
 
 
 
 
 
 
 
 
fb3185e
 
f094617
fb3185e
 
 
 
 
f094617
 
 
 
 
 
 
fb3185e
 
f094617
 
 
fb3185e
f094617
fb3185e
f094617
fb3185e
f094617
fb3185e
 
f094617
fb3185e
f094617
 
 
 
 
fb3185e
f094617
fb3185e
 
 
 
 
 
 
 
f094617
fb3185e
f094617
fb3185e
 
 
 
 
 
 
 
 
f094617
 
fb3185e
 
f094617
fb3185e
 
 
 
 
 
 
 
 
f094617
 
fb3185e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f094617
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import gradio as gr
import json
import base64
import tempfile
import os
from typing import Dict, List, Optional, Literal
from datetime import datetime
from PIL import Image, ImageDraw, ImageFont
import io
import spaces
import shutil
from pathlib import Path
from htrflow.volume.volume import Collection
from htrflow.pipeline.pipeline import Pipeline

PIPELINE_CONFIGS = {
    "letter_english": {
        "steps": [
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
                    "generation_settings": {"batch_size": 8},
                },
            },
            {
                "step": "TextRecognition",
                "settings": {
                    "model": "TrOCR",
                    "model_settings": {"model": "microsoft/trocr-base-handwritten"},
                    "generation_settings": {"batch_size": 16},
                },
            },
            {"step": "OrderLines"},
        ]
    },
    "letter_swedish": {
        "steps": [
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
                    "generation_settings": {"batch_size": 8},
                },
            },
            {
                "step": "TextRecognition",
                "settings": {
                    "model": "TrOCR",
                    "model_settings": {"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"},
                    "generation_settings": {"batch_size": 16},
                },
            },
            {"step": "OrderLines"},
        ]
    },
    "spread_english": {
        "steps": [
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
                    "generation_settings": {"batch_size": 4},
                },
            },
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
                    "generation_settings": {"batch_size": 8},
                },
            },
            {
                "step": "TextRecognition",
                "settings": {
                    "model": "TrOCR",
                    "model_settings": {"model": "microsoft/trocr-base-handwritten"},
                    "generation_settings": {"batch_size": 16},
                },
            },
            {"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
        ]
    },
    "spread_swedish": {
        "steps": [
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
                    "generation_settings": {"batch_size": 4},
                },
            },
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
                    "generation_settings": {"batch_size": 8},
                },
            },
            {
                "step": "TextRecognition",
                "settings": {
                    "model": "TrOCR",
                    "model_settings": {"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"},
                    "generation_settings": {"batch_size": 16},
                },
            },
            {"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
        ]
    },
}

@spaces.GPU
def process_htr(image: Image.Image, document_type: Literal["letter_english", "letter_swedish", "spread_english", "spread_swedish"] = "spread_swedish", confidence_threshold: float = 0.8, custom_settings: Optional[str] = None) -> Dict:
    """Process handwritten text recognition on uploaded images using HTRflow pipelines."""
    try:
        if image is None:
            return {"success": False, "error": "No image provided", "results": None}

        with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
            image.save(temp_file.name, "PNG")
            temp_image_path = temp_file.name

        try:
            if custom_settings:
                try:
                    config = json.loads(custom_settings)
                except json.JSONDecodeError:
                    return {"success": False, "error": "Invalid JSON in custom_settings parameter", "results": None}
            else:
                config = PIPELINE_CONFIGS[document_type]

            collection = Collection([temp_image_path])
            pipeline = Pipeline.from_config(config)
            processed_collection = pipeline.run(collection)

            img_buffer = io.BytesIO()
            image.save(img_buffer, format="PNG")
            image_base64 = base64.b64encode(img_buffer.getvalue()).decode("utf-8")

            results = extract_text_results(processed_collection, confidence_threshold)
            
            processing_state = {
                "collection_data": serialize_collection_data(processed_collection),
                "image_base64": image_base64,
                "image_size": image.size,
                "document_type": document_type,
                "confidence_threshold": confidence_threshold,
                "timestamp": datetime.now().isoformat(),
            }

            return {
                "success": True,
                "results": results,
                "processing_state": json.dumps(processing_state),
                "metadata": {
                    "total_lines": len(results.get("text_lines", [])),
                    "average_confidence": results.get("average_confidence", 0),
                    "document_type": document_type,
                    "image_dimensions": image.size,
                },
            }
        finally:
            if os.path.exists(temp_image_path):
                os.unlink(temp_image_path)
    except Exception as e:
        return {"success": False, "error": f"HTR processing failed: {str(e)}", "results": None}

def visualize_results(processing_state: str, visualization_type: Literal["overlay", "confidence_heatmap", "text_regions"] = "overlay", show_confidence: bool = True, highlight_low_confidence: bool = True, image: Optional[Image.Image] = None) -> Dict:
    """Generate interactive visualizations of HTR processing results."""
    try:
        state = json.loads(processing_state)
        collection_data = state["collection_data"]

        if image is not None:
            original_image = image
        else:
            image_data = base64.b64decode(state["image_base64"])
            original_image = Image.open(io.BytesIO(image_data))

        viz_image = create_visualization(original_image, collection_data, visualization_type, show_confidence, highlight_low_confidence)

        img_buffer = io.BytesIO()
        viz_image.save(img_buffer, format="PNG")
        img_base64 = base64.b64encode(img_buffer.getvalue()).decode("utf-8")

        return {
            "success": True,
            "visualization": {
                "image_base64": img_base64,
                "image_format": "PNG",
                "visualization_type": visualization_type,
                "dimensions": viz_image.size,
            },
            "metadata": {"total_elements": len(collection_data.get("text_elements", []))},
        }
    except Exception as e:
        return {"success": False, "error": f"Visualization generation failed: {str(e)}", "visualization": None}

def export_results(processing_state: str, output_formats: List[Literal["txt", "json", "alto", "page"]] = ["txt"], confidence_filter: float = 0.0) -> Dict:
    """Export HTR results to multiple formats using HTRflow's native export functionality."""
    try:
        state = json.loads(processing_state)
        
        with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
            image_data = base64.b64decode(state["image_base64"])
            image = Image.open(io.BytesIO(image_data))
            image.save(temp_file.name, "PNG")
            temp_image_path = temp_file.name

        try:
            collection = Collection([temp_image_path])
            pipeline = Pipeline.from_config(PIPELINE_CONFIGS[state["document_type"]])
            processed_collection = pipeline.run(collection)

            temp_dir = Path(tempfile.mkdtemp())
            exports = {}
            
            for fmt in output_formats:
                export_dir = temp_dir / fmt
                processed_collection.save(directory=str(export_dir), serializer=fmt)
                
                export_files = []
                for root, _, files in os.walk(export_dir):
                    for file in files:
                        file_path = os.path.join(root, file)
                        with open(file_path, 'r', encoding='utf-8') as f:
                            content = f.read()
                        export_files.append({"filename": file, "content": content})
                
                exports[fmt] = export_files

            shutil.rmtree(temp_dir)

            return {
                "success": True,
                "exports": exports,
                "export_metadata": {
                    "formats_generated": output_formats,
                    "confidence_filter": confidence_filter,
                    "timestamp": datetime.now().isoformat(),
                },
            }
        finally:
            if os.path.exists(temp_image_path):
                os.unlink(temp_image_path)
                
    except Exception as e:
        return {"success": False, "error": f"Export generation failed: {str(e)}", "exports": None}

def extract_text_results(collection: Collection, confidence_threshold: float) -> Dict:
    results = {"extracted_text": "", "text_lines": [], "confidence_scores": []}
    for page in collection.pages:
        for node in page.traverse():
            if hasattr(node, "text") and node.text and hasattr(node, "confidence") and node.confidence >= confidence_threshold:
                results["text_lines"].append({
                    "text": node.text,
                    "confidence": node.confidence,
                    "bbox": getattr(node, "bbox", None),
                })
                results["extracted_text"] += node.text + "\n"
                results["confidence_scores"].append(node.confidence)
    
    results["average_confidence"] = sum(results["confidence_scores"]) / len(results["confidence_scores"]) if results["confidence_scores"] else 0
    return results

def serialize_collection_data(collection: Collection) -> Dict:
    text_elements = []
    for page in collection.pages:
        for node in page.traverse():
            if hasattr(node, "text") and node.text:
                text_elements.append({
                    "text": node.text,
                    "confidence": getattr(node, "confidence", 1.0),
                    "bbox": getattr(node, "bbox", None),
                })
    return {"text_elements": text_elements}

def create_visualization(image, collection_data, visualization_type, show_confidence, highlight_low_confidence):
    viz_image = image.copy()
    draw = ImageDraw.Draw(viz_image)
    
    try:
        font = ImageFont.truetype("arial.ttf", 12)
    except:
        font = ImageFont.load_default()

    for element in collection_data.get("text_elements", []):
        if element.get("bbox"):
            bbox = element["bbox"]
            confidence = element.get("confidence", 1.0)
            
            if visualization_type == "overlay":
                color = (255, 165, 0) if highlight_low_confidence and confidence < 0.7 else (0, 255, 0)
                draw.rectangle(bbox, outline=color, width=2)
                if show_confidence:
                    draw.text((bbox[0], bbox[1] - 15), f"{confidence:.2f}", fill=color, font=font)
            
            elif visualization_type == "confidence_heatmap":
                if confidence < 0.5:
                    color = (255, 0, 0, 100)
                elif confidence < 0.8:
                    color = (255, 255, 0, 100)
                else:
                    color = (0, 255, 0, 100)
                overlay = Image.new("RGBA", viz_image.size, (0, 0, 0, 0))
                overlay_draw = ImageDraw.Draw(overlay)
                overlay_draw.rectangle(bbox, fill=color)
                viz_image = Image.alpha_composite(viz_image.convert("RGBA"), overlay)
            
            elif visualization_type == "text_regions":
                colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0)]
                color = colors[hash(str(bbox)) % len(colors)]
                draw.rectangle(bbox, outline=color, width=3)

    return viz_image.convert("RGB") if visualization_type == "confidence_heatmap" else viz_image

def create_htrflow_mcp_server():
    demo = gr.TabbedInterface(
        [
            gr.Interface(
                fn=process_htr,
                inputs=[
                    gr.Image(type="pil", label="Upload Image"),
                    gr.Dropdown(choices=["letter_english", "letter_swedish", "spread_english", "spread_swedish"], value="letter_english", label="Document Type"),
                    gr.Slider(0.0, 1.0, value=0.8, label="Confidence Threshold"),
                    gr.Textbox(label="Custom Settings (JSON)", placeholder="Optional custom pipeline settings"),
                ],
                outputs=gr.JSON(label="Processing Results"),
                title="HTR Processing Tool",
                description="Process handwritten text using configurable HTRflow pipelines",
                api_name="process_htr",
            ),
            gr.Interface(
                fn=visualize_results,
                inputs=[
                    gr.Textbox(label="Processing State (JSON)", placeholder="Paste processing results from HTR tool"),
                    gr.Dropdown(choices=["overlay", "confidence_heatmap", "text_regions"], value="overlay", label="Visualization Type"),
                    gr.Checkbox(value=True, label="Show Confidence Scores"),
                    gr.Checkbox(value=True, label="Highlight Low Confidence"),
                    gr.Image(type="pil", label="Image (optional)"),
                ],
                outputs=gr.JSON(label="Visualization Results"),
                title="Results Visualization Tool",
                description="Generate interactive visualizations of HTR results",
                api_name="visualize_results",
            ),
            gr.Interface(
                fn=export_results,
                inputs=[
                    gr.Textbox(label="Processing State (JSON)", placeholder="Paste processing results from HTR tool"),
                    gr.CheckboxGroup(choices=["txt", "json", "alto", "page"], value=["txt"], label="Output Formats"),
                    gr.Slider(0.0, 1.0, value=0.0, label="Confidence Filter"),
                ],
                outputs=gr.JSON(label="Export Results"),
                title="Export Tool",
                description="Export HTR results to multiple formats",
                api_name="export_results",
            ),
        ],
        ["HTR Processing", "Results Visualization", "Export Results"],
        title="HTRflow MCP Server",
    )
    return demo

if __name__ == "__main__":
    demo = create_htrflow_mcp_server()
    demo.launch(mcp_server=True)