File size: 32,942 Bytes
e5caa62 85f3d84 1ce4bd4 458da34 1ce4bd4 e5caa62 458da34 e5caa62 458da34 e5caa62 85f3d84 8a95645 458da34 8a95645 458da34 8a95645 458da34 8a95645 e5caa62 458da34 e5caa62 458da34 e5caa62 458da34 e5caa62 3f28de6 e5caa62 e1b08dc e5caa62 0be903e e5caa62 8a95645 458da34 8a95645 e5caa62 8a95645 e5caa62 8a95645 e5caa62 8a95645 e5caa62 8a95645 e5caa62 8a95645 e5caa62 8a95645 e5caa62 8a95645 85f3d84 8a95645 458da34 8a95645 e1b08dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 |
import os
import requests
import gradio as gr
import anthropic
import yaml
import hashlib
import json
import io
import matplotlib.pyplot as plt
import seaborn as sns
from dotenv import load_dotenv
from datetime import datetime
from itertools import combinations
from collections import defaultdict
load_dotenv()
# Anthropic API Setup
anthropic_client = anthropic.Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
# ---- Agent Discovery Logic ----
AGENT_ICONS = {
"Climate Sensor": "🌦️",
"Policy Modeler": "📜",
"Economic Forecast": "💹",
"Media Monitor": "📰",
"Public Health": "🏥",
"NGO Matcher": "🤝"
}
CLAUDE_MODEL="claude-sonnet-4-20250514"
RETIREMENT_THRESHOLD = 1 # Agent appears in fewer than this many swarms
def should_spawn_hybrid(threshold=3, log_path="swarm_log.jsonl", registry_path="agents_registry.json"):
from collections import Counter
import itertools
try:
with open(log_path, "r", encoding="utf-8") as f:
lines = [json.loads(line) for line in f if line.strip()]
except:
return None, None
pair_counts = Counter()
for entry in lines:
agents = sorted(entry.get("agents", []))
for a, b in itertools.combinations(agents, 2):
pair_counts[(a, b)] += 1
try:
with open(registry_path, "r", encoding="utf-8") as f:
registry = json.load(f)
hybrid_origins = [tuple(sorted(agent.get("origin", []))) for agent in registry.get("agents", []) if agent.get("status") == "prototype"]
except:
hybrid_origins = []
for (a, b), count in pair_counts.items():
if count >= threshold and (a, b) not in hybrid_origins:
return a, b
return None, None
def spawn_hybrid_agent(agent_a, agent_b, registry_path="agents_registry.json"):
import uuid
hybrid_name = f"Hybrid_{uuid.uuid4().hex[:6]}"
hybrid_description = f"Hybrid of {agent_a} and {agent_b}, designed through observed co-usage."
hybrid_icon = "🧬"
new_agent = {
"name": hybrid_name,
"description": hybrid_description,
"status": "prototype",
"origin": [agent_a, agent_b],
"icon": hybrid_icon
}
try:
with open(registry_path, "r", encoding="utf-8") as f:
data = json.load(f)
except:
data = {"agents": []}
data["agents"].append(new_agent)
with open(registry_path, "w", encoding="utf-8") as f:
json.dump(data, f, indent=2)
return hybrid_name
pair_counts = Counter()
for entry in lines:
agents = sorted(entry.get("agents", []))
for a, b in itertools.combinations(agents, 2):
pair_counts[(a, b)] += 1
try:
with open(registry_path, "r", encoding="utf-8") as f:
registry = json.load(f)
hybrid_origins = [tuple(sorted(agent.get("origin", []))) for agent in registry.get("agents", []) if agent.get("status") == "prototype"]
except:
hybrid_origins = []
for (a, b), count in pair_counts.items():
if count >= threshold and (a, b) not in hybrid_origins:
return a, b
return None, None
# ---- Utility: Deprecate Stale Agents ----
def deprecate_low_usage_agents(log_path="swarm_log.jsonl", registry_path="agents_registry.json"):
usage_counter = defaultdict(int)
try:
with open(log_path, "r", encoding="utf-8") as f:
for line in f:
entry = json.loads(line)
for agent in entry.get("agents", []):
usage_counter[agent] += 1
if not os.path.exists(registry_path):
print("No registry found to update.")
return
with open(registry_path, 'r') as f:
registry = json.load(f)
modified = False
for agent in registry.get("agents", []):
if agent.get("status") == "active" and usage_counter[agent["name"]] < RETIREMENT_THRESHOLD:
agent["status"] = "deprecated"
modified = True
if modified:
with open(registry_path, 'w') as f:
json.dump(registry, f, indent=2)
print("Stale agents deprecated.")
else:
print("No agents met deprecation criteria.")
except Exception as e:
print(f"Error during agent deprecation: {e}")
# ---- Swarm Self-Assembly ----
def analyze_intent_and_select_swarm(user_input, registry_path="agents_registry.json"):
try:
with open(registry_path, 'r') as f:
registry = json.load(f)
except Exception as e:
return [], f"Failed to load registry: {str(e)}"
try:
available_agents = "\n".join([f"- {a['name']}: {a.get('description', '')}" for a in registry['agents'] if a.get('status') == 'active'])
messages = [
{"role": "system", "content": "You're a swarm selector. Given a task, you select a subset of agents best suited to it."},
{"role": "user", "content": f"Task: {user_input}\nAvailable agents:\n{available_agents}"},
]
response = anthropic_client.messages.create(
model=CLAUDE_MODEL,
max_tokens=256,
messages=messages
)
selected_names = []
for agent in registry['agents']:
if agent['name'].lower() in response.content[0].text.lower():
selected_names.append(agent['name'])
return selected_names, None
except Exception as e:
return [], f"Error selecting swarm: {str(e)}"
# ---- Swarm Execution & Aggregation ----
def route_to_swarm_and_aggregate(user_input, selected_agents, registry_path="agents_registry.json", log_path="swarm_log.jsonl"):
try:
with open(registry_path, 'r') as f:
registry = json.load(f)
except Exception as e:
return f"Failed to load registry: {str(e)}"
responses = []
for agent in registry['agents']:
if agent['name'] in selected_agents:
try:
resp = requests.post(
agent['endpoint'],
json={"input": user_input},
timeout=agent.get('timeout_seconds', 30)
)
resp.raise_for_status()
out = resp.json().get("output", "No output.")
responses.append(f"[{agent['name']}]\n{out}\n")
except Exception as e:
responses.append(f"[{agent['name']}] Error: {str(e)}")
# Log swarm usage
try:
with open(log_path, "a", encoding="utf-8") as logf:
json.dump({
"timestamp": datetime.utcnow().isoformat(),
"input": user_input,
"agents": selected_agents
}, logf)
logf.write("\n")
except:
pass
return "\n---\n".join(responses)
def fetch_registry():
# Load from local file first, fall back to remote if not found
local_registry = "agents_registry.json"
if os.path.exists(local_registry):
print("Loading agents from local registry file")
try:
with open(local_registry, 'r', encoding='utf-8') as f:
return json.load(f)
except Exception as e:
print(f"Error loading local registry: {e}")
# Fall back to remote registry
remote_url = "https://huggingface.co/spaces/Agents-MCP-Hackathon/collective-intelligence-orchestrator/resolve/main/agents_registry.json"
print(f"Fetching agents from remote registry: {remote_url}")
try:
res = requests.get(remote_url, timeout=5)
res.raise_for_status()
return res.json()
except Exception as e:
print(f"Error fetching remote registry: {e}")
return None
def fetch_agent_yaml(space_url):
try:
res = requests.get(f"{space_url}/agent.yaml")
return yaml.safe_load(res.text)
except:
return None
def compute_agent_embedding(text):
# Handle None or empty input
if not text:
return 0
# Simulated embedding using a hash — replace with real embedding logic if desired
return int(hashlib.md5(text.encode()).hexdigest(), 16) % 10000
def discover_agents_from_registry():
registry = fetch_registry()
if not registry or 'agents' not in registry:
print("No valid registry data found")
return [], [], []
tools = []
cards = []
index = []
for agent in registry['agents']:
if not agent.get('status') == 'active':
continue
try:
# Use metadata from registry or fetch from agent if needed
name = agent.get('name', 'Unnamed Agent')
description = agent.get('description', 'No description available')
endpoint = agent.get('endpoint')
icon = agent.get('icon', '')
# Create tool function using the agent's endpoint
def tool_func(input_text, agent_endpoint=endpoint, agent_name=name):
try:
resp = requests.post(
agent_endpoint,
json={"input": input_text},
timeout=agent.get('timeout_seconds', 30)
)
resp.raise_for_status()
return resp.json().get("output", "No structured output.")
except Exception as e:
print(f"Error calling {agent_name} agent: {str(e)}")
return f"Error: Failed to call {agent_name} agent - {str(e)}"
# Compute embedding for semantic search
emb = compute_agent_embedding(f"{name} {description} {' '.join(agent.get('tags', []))}")
# Add to tools with all necessary metadata
tools.append((
name,
icon,
description,
tool_func,
emb,
agent.get('categories', []),
agent.get('capabilities', [])
))
# Update index for semantic search
index.append((emb, name))
# Add card for UI
cards.append((icon, name, description, agent.get('categories', [])))
except Exception as e:
print(f"Error processing agent {agent.get('name', 'unknown')}: {str(e)}")
continue
print(f"Successfully loaded {len(tools)} agents from registry")
return tools, cards, index
# ---- Heatmap Generator ----
def generate_swarm_heatmap(log_path="swarm_log.jsonl"):
from itertools import combinations
from collections import defaultdict
import pandas as pd
agent_pairs = defaultdict(int)
try:
with open(log_path, "r", encoding="utf-8") as f:
for line in f:
entry = json.loads(line)
agents = entry.get("agents", [])
for a, b in combinations(sorted(agents), 2):
agent_pairs[(a, b)] += 1
all_agents = sorted({agent for pair in agent_pairs for agent in pair})
matrix = pd.DataFrame(0, index=all_agents, columns=all_agents)
for (a, b), count in agent_pairs.items():
matrix.at[a, b] = count
matrix.at[b, a] = count
# Create heatmap figure
plt.figure(figsize=(8, 6))
sns.heatmap(matrix, annot=True, fmt="d", cmap="YlGnBu", linewidths=0.5)
plt.title("Swarm Agent Co-occurrence")
plt.xticks(rotation=45, ha="right")
plt.yticks(rotation=0)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format="png")
plt.close()
buf.seek(0)
return buf
except Exception as e:
print(f"Error generating heatmap: {e}")
return None
# ---- Agent Breeder ----
def get_top_swarm_pairs(log_path="swarm_log.jsonl", top_n=1):
counter = defaultdict(int)
with open(log_path, "r", encoding="utf-8") as f:
for line in f:
entry = json.loads(line)
agents = entry.get("agents", [])
for a, b in combinations(sorted(agents), 2):
counter[(a, b)] += 1
return sorted(counter.items(), key=lambda x: x[1], reverse=True)[:top_n]
def breed_hybrid_agent():
top_pairs = get_top_swarm_pairs()
if not top_pairs:
return "No agent pairs to breed."
(agent1, agent2), _ = top_pairs[0]
hybrid_name = f"Hybrid_{agent1.split('-')[-1]}_{agent2.split('-')[-1]}"
hybrid_prompt = f"This agent combines the capabilities of {agent1} and {agent2} to solve complex tasks."
hybrid_metadata = {
"name": hybrid_name,
"description": hybrid_prompt,
"origin": [agent1, agent2],
"status": "prototype",
"generated_at": datetime.utcnow().isoformat(),
"endpoint": f"https://huggingface.co/spaces/Agents-MCP-Hackathon/collective-intelligence-orchestrator/resolve/main/hybrids/{hybrid_name}/serve",
"icon": "🧬",
"categories": ["hybrid"],
"capabilities": ["emergent-analysis"]
}
os.makedirs(f"hybrids/{hybrid_name}", exist_ok=True)
# Save metadata
with open(f"hybrids/{hybrid_name}/{hybrid_name}.json", "w") as f:
json.dump(hybrid_metadata, f, indent=2)
# Generate agent.yaml
agent_yaml = {
"name": hybrid_name,
"description": hybrid_prompt,
"author": "Orchestrator",
"tags": ["hybrid", "generated"],
"capabilities": ["emergent-analysis"],
"timeout_seconds": 30
}
with open(f"hybrids/{hybrid_name}/agent.yaml", "w") as f:
yaml.dump(agent_yaml, f)
# Generate app.py
app_code = f"""import gradio as gr\n\ndef respond(input):\n return \"[Hybrid Agent: {hybrid_name}]\nResponding with insight from merged origins: {agent1} + {agent2}\"\n\niface = gr.Interface(fn=respond, inputs=\"text\", outputs=\"text\", title=\"{hybrid_name}\")\n\niface.launch(mcp_server=True)"""
with open(f"hybrids/{hybrid_name}/app.py", "w") as f:
f.write(app_code)
# Generate README
with open(f"hybrids/{hybrid_name}/README.md", "w") as f:
f.write(f"""# {hybrid_name}
This hybrid agent was auto-generated by combining:
- `{agent1}`
- `{agent2}`
## Description
{hybrid_prompt}
## Status
Prototype
Generated at {datetime.utcnow().isoformat()}
""")
# Auto-update registry
registry_path = "agents_registry.json"
try:
if os.path.exists(registry_path):
with open(registry_path, 'r') as f:
registry = json.load(f)
else:
registry = {"agents": []}
registry["agents"].append(hybrid_metadata)
with open(registry_path, 'w') as f:
json.dump(registry, f, indent=2)
except Exception as e:
print(f"Failed to update registry: {e}")
return f"Hybrid agent '{hybrid_name}' scaffolded and registered."
# ---- Claude Orchestrator ----
def match_agents_by_vector(input_text, tools, index):
if not tools or not index:
return []
input_emb = compute_agent_embedding(input_text)
# Calculate similarity scores for all agents
scored_agents = []
for i, (emb, name) in enumerate(index):
# Simple similarity based on vector distance
similarity = 1 / (1 + abs(emb - input_emb))
scored_agents.append((similarity, tools[i]))
# Sort by similarity score (descending)
scored_agents.sort(reverse=True, key=lambda x: x[0])
# Return top matching agents (above threshold or top 3)
threshold = 0.3 # Adjust based on your needs
return [agent for score, agent in scored_agents if score > threshold][:5] # Limit to top 5 matches
def claude_conductor(message, history, tools=None, index=None):
if tools is None:
tools = []
if index is None:
index = []
selected_tools = match_agents_by_vector(message, tools, index)
tools_description = "\n".join(
f"- {icon} {name}: {desc} (Categories: {', '.join(categories) if categories else 'None'})"
for name, icon, desc, _, _, categories, _ in selected_tools
) if selected_tools else "No relevant tools matched."
# Format the conversation history for Claude
conversation = []
for user_msg, bot_msg in history:
if user_msg:
conversation.append({"role": "user", "content": user_msg})
if bot_msg:
conversation.append({"role": "assistant", "content": bot_msg})
# Add the current user message
conversation.append({"role": "user", "content": message})
# Create system prompt
system_prompt = f"""You are the conductor of a Collective Intelligence Swarm—a coordinated network of AI agents including both foundational agents and auto-generated hybrid prototypes.
Each agent specializes in real-world crisis domains (climate, public health, media monitoring, etc.) and has capabilities such as forecasting, summarization, cross-domain linking, or anomaly detection.
You must analyze the user's problem and determine which agents, or combination of agents, are best suited for the task.
Give preference to agents whose capabilities align with the user's request.
You may also draw on emergent-hybrid agents created from frequent co-occurrence patterns.
Here are the currently active tools:
{tools_description}
Respond clearly and concisely with your synthesis of the swarm’s outputs."""
# Load top co-occurring agents for swarm awareness
top_swarm_pairs = get_top_swarm_pairs(top_n=3)
co_usage_info = "\n".join(
f"- {a} + {b}: used together {count} times"
for (a, b), count in top_swarm_pairs
)
if co_usage_info:
system_prompt += f"\n\nHistorical synergy data:\n{co_usage_info}"
try:
# Call Claude API
response = anthropic_client.messages.create(
model=CLAUDE_MODEL,
max_tokens=1000,
system=system_prompt,
messages=conversation,
temperature=0.7
)
if response.content and len(response.content) > 0:
output_text = response.content[0].text
else:
output_text = "I couldn't generate a response. Please try again."
# Log swarm agent usage
log_entry = {
"timestamp": datetime.utcnow().isoformat(),
"input": message,
"agents": [name for name, _, _, _, _, _, _ in selected_tools],
"response": output_text
}
with open("swarm_log.jsonl", "a", encoding="utf-8") as log_file:
log_file.write(json.dumps(log_entry) + "\n")
return output_text
except Exception as e:
print(f"Error calling Claude API: {str(e)}")
return f"An error occurred while processing your request: {str(e)}"
def mcp_entry_point(input_text: str) -> str:
return claude_conductor(message=input_text, history=[], tools=tools, index=index)
# ---- Launch Gradio ChatInterface ----
if __name__ == "__main__":
print("Starting application...")
tools, cards, index = discover_agents_from_registry()
print(f"Discovered {len(tools)} tools, {len(cards)} cards, {len(index)} index entries")
if not tools:
print("WARNING: No tools discovered. The UI may not display correctly.")
with gr.Blocks(
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan"),
title="Collective Intelligence Orchestrator"
) as demo:
gr.Markdown("""
# 🧠 Collective Intelligence Orchestrator
_Activate a living swarm of AI agents._
Enter a real-world scenario (e.g., natural disaster, policy failure, humanitarian crisis), and let the orchestrator dynamically coordinate a swarm response using multiple autonomous MCP agents.
**Author**: [@dtka](https://huggingface.co/dtka)
**Project Docs**: [HF Repo README](https://huggingface.co/spaces/Agents-MCP-Hackathon/collective-intelligence-orchestrator/resolve/main/README.md)
**Hackathon**: [Hugging Face MCP Hackathon](https://huggingface.co/Agents-MCP-Hackathon)
""")
with gr.Tab("Chat with Swarm"):
with gr.Row():
with gr.Column(scale=1):
with gr.Accordion("Agents Details"):
gr.Markdown("### 🧩 Available Agents")
if not cards:
gr.Markdown("⚠️ No agents discovered. Please check agents_registry.json or try again later.")
for icon, name, desc, categories in cards:
categories_html = f"<br><span style='font-size: 0.8em; color: #666;'><i>Categories: {', '.join(categories) if categories else 'General'}</i></span>" if categories else ""
gr.Markdown(
f"<b>{icon} {name}</b><br>"
f"<span style='font-size: 0.9em;'>{desc}</span>"
f"{categories_html}",
render=True,
elem_id="agent-card"
)
with gr.Column(scale=2):
# Create the chat interface with explicit buttons
with gr.Row():
with gr.Column(scale=8):
# Chatbot display
chatbot = gr.Chatbot(
height=500,
show_copy_button=True,
show_label=False,
container=True,
bubble_full_width=True,
placeholder="Start a conversation...",
elem_id="chatbot"
)
# Input area with buttons
with gr.Row():
msg = gr.Textbox(
placeholder="Describe a crisis or scenario...",
container=False,
scale=8,
min_width=200,
show_label=False
)
submit_btn = gr.Button("Send to Swarm", variant="primary", scale=1)
stop_btn = gr.Button("Stop", variant="stop", scale=1, visible=False)
# Additional buttons
with gr.Row():
clear_btn = gr.Button("Clear Chat")
retry_btn = gr.Button("Retry")
# Format messages for the chat interface
def format_messages(history):
formatted = []
for user_msg, bot_msg in history:
if user_msg:
formatted.append((user_msg, None))
if bot_msg is not None:
if formatted and formatted[-1][1] is None:
formatted[-1] = (formatted[-1][0], bot_msg)
else:
formatted.append((None, bot_msg))
return formatted
# Set up button click handlers
def user(user_message, history):
if not user_message.strip():
return "", history
return "", history + [[user_message, None]]
def bot(history):
if not history or not history[-1][0]:
return history
# Get the current message and previous conversation
current_message = history[-1][0]
prev_messages = history[:-1]
# Format history for Claude
formatted_history = []
for user_msg, bot_msg in prev_messages:
if user_msg:
formatted_history.append((user_msg, bot_msg or ""))
# Get response from Claude
try:
bot_message = claude_conductor(current_message, formatted_history, tools, index)
history[-1][1] = bot_message
except Exception as e:
print(f"Error in bot response: {e}")
history[-1][1] = "Sorry, I encountered an error. Please try again."
return history
# Message submission handler
def process_message(user_message, history):
if not user_message.strip():
return "", history
history = history + [[user_message, None]]
return "", history
# Connect UI elements
submit_event = msg.submit(
process_message,
[msg, chatbot],
[msg, chatbot],
queue=False
).then(
bot,
chatbot,
chatbot
)
submit_btn.click(
process_message,
[msg, chatbot],
[msg, chatbot],
queue=False
).then(
bot,
chatbot,
chatbot
)
# Clear chat button
clear_btn.click(lambda: [], None, chatbot, queue=False)
# Retry button
def retry_last(history):
if not history:
return history
if history[-1][1] is not None:
history[-1][1] = None
return history
retry_btn.click(
retry_last,
chatbot,
chatbot,
queue=False
).then(
bot,
chatbot,
chatbot
)
# Add Heatmap Tab
with gr.Tab("Agent Swarm Heatmap"):
with gr.Row():
with gr.Column():
heatmap_btn = gr.Button("Show Heatmap")
heatmap_output = gr.Image(type="pil", label="Agent Interaction Heatmap")
def show_heatmap():
heatmap = generate_swarm_heatmap()
if heatmap is None:
return None
from PIL import Image
return Image.open(heatmap)
heatmap_btn.click(show_heatmap, outputs=heatmap_output)
gr.Markdown("""
### How to read this heatmap:
- The heatmap shows how often different agents interact together
- Darker cells indicate more frequent interactions between agents
- The diagonal shows self-interactions (typically not used)
- Use this to understand which agents work together most frequently
""")
# Add Evolution Dashboard Tab
with gr.Tab("🧬 Agent Evolution Dashboard"):
dashboard_md = gr.Markdown("""### Agent Registry Summary
Click **Refresh** to see the latest agent status.
Click **Retire Stale Agents** to deprecate unused tools.
""")
evolution_display = gr.Markdown("Loading...", elem_id="evolution_status")
refresh_btn = gr.Button("🔄 Refresh Dashboard")
retire_btn = gr.Button("🛑 Retire Stale Agents")
def list_agents_by_status():
try:
with open("agents_registry.json", "r", encoding="utf-8") as f:
data = json.load(f)
active, prototype, deprecated = [], [], []
for agent in data.get("agents", []):
name = agent.get("name", "Unnamed")
status = agent.get("status", "unknown")
origin = ", ".join(agent.get("origin", [])) if "origin" in agent else "—"
icon = agent.get("icon", "")
card = f"- {icon} **{name}** (origin: {origin})"
if status == "active":
active.append(card)
elif status == "prototype":
prototype.append(card)
elif status == "deprecated":
deprecated.append(card)
def format_group(title, items):
header = f"### {title}\n"
content = "\n".join(items) if items else "_No agents found._"
return header + content
return (
format_group("🟢 Active Agents", active) + "\n\n"
+ format_group("🧪 Prototypes (Hybrids)", prototype) + "\n\n"
+ format_group("🛑 Deprecated Agents", deprecated)
)
except Exception as e:
return f"Error loading registry: {e}"
# Spawn Hybrid Agent Button
spawn_btn = gr.Button("🧬 Spawn Hybrid Agent")
def handle_spawn_hybrid():
a, b = should_spawn_hybrid()
if a and b:
name = spawn_hybrid_agent(a, b)
return f"✅ Spawned new hybrid: {name}\n\n" + list_agents_by_status()
else:
return "⚠️ No suitable agent pair found for hybridization.\n\n" + list_agents_by_status()
spawn_btn.click(fn=handle_spawn_hybrid, outputs=evolution_display)
# Refresh Button
refresh_btn.click(list_agents_by_status, outputs=evolution_display)
# Retire Button
retire_btn.click(
fn=lambda: (deprecate_low_usage_agents(), list_agents_by_status())[1],
outputs=evolution_display
)
list_agents_by_status()
# Add Documentation Tab
with gr.Tab("📚 Documentation"):
def load_readme():
try:
with open('README.md', 'r', encoding='utf-8') as f:
content = f.read()
# Remove the frontmatter if it exists
if content.startswith('---'):
content = content.split('---', 2)[-1].strip()
return content
except Exception as e:
return f"# Error loading documentation\n\nCould not load README.md: {str(e)}"
gr.Markdown(load_readme())
mcp_interface = gr.Interface(
fn=mcp_entry_point,
inputs=gr.Textbox(label="User Input"),
outputs=gr.Textbox(label="Claude Orchestrator Response"),
title="Collective Intelligence MCP API",
description="Send a crisis query to swarm-coordinated Claude agents"
)
demo.launch(mcp_server=True)
|