Adding Agent
Browse files- .gitignore +2 -0
- README.md +31 -3
- agents_registry.json +114 -0
- app.py +359 -0
- requirements.txt +4 -0
- utils/discovery.py +32 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# Environment variables
|
2 |
+
.env
|
README.md
CHANGED
@@ -1,14 +1,42 @@
|
|
1 |
---
|
2 |
title: Collective Intelligence Orchestrator
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.33.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
-
short_description:
|
12 |
---
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Collective Intelligence Orchestrator
|
3 |
+
emoji: 🐢
|
4 |
+
colorFrom: purple
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.33.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
+
short_description: Gradio-based interface coordinates a network of agents
|
12 |
---
|
13 |
|
14 |
+
# Collective Intelligence Orchestrator
|
15 |
+
|
16 |
+
This Gradio-based interface coordinates a network of autonomous AI agents using Hugging Face's MCP protocol.
|
17 |
+
|
18 |
+
## Agents in the Network:
|
19 |
+
- Climate Sensor
|
20 |
+
- Policy Modeler
|
21 |
+
- Economic Forecast
|
22 |
+
- Media Monitor
|
23 |
+
- Public Health
|
24 |
+
- NGO Matcher
|
25 |
+
|
26 |
+
Submit a real-world scenario, and watch the swarm collaborate in real time.
|
27 |
+
|
28 |
+
## Test Case Example:
|
29 |
+
Input:
|
30 |
+
|
31 |
+
- “Massive flooding in coastal Bangladesh, affecting over 200,000 residents. Power outages, displacement, and rising waterborne diseases reported.”
|
32 |
+
|
33 |
+
Expected output:
|
34 |
+
|
35 |
+
- Climate Sensor: Critical anomaly detected.
|
36 |
+
- Policy Modeler: Emergency zoning, sanitation relief, medical deployment.
|
37 |
+
- Economic Forecast: Estimated GDP loss, recovery timeline.
|
38 |
+
- Media Monitor: High sentiment panic, moderate misinfo risk.
|
39 |
+
- Public Health: Cholera risk, hospital overload.
|
40 |
+
- NGO Matcher: Suggest 2–3 orgs that can help.
|
41 |
+
|
42 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
agents_registry.json
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"version": "1.0.0",
|
3 |
+
"last_updated": "2025-06-10T08:47:58Z",
|
4 |
+
"agents": [
|
5 |
+
{
|
6 |
+
"id": "ngo-matcher-001",
|
7 |
+
"name": "NGO Matcher",
|
8 |
+
"description": "Matches humanitarian needs with relevant NGOs and aid organizations",
|
9 |
+
"endpoint": "https://dtka-collective-intelligence-ngo-matching-agent.hf.space/agent",
|
10 |
+
"file_url": "https://huggingface.co/spaces/dtka/collective-intelligence-ngo-matching-agent/resolve/main/",
|
11 |
+
"icon": "🤝",
|
12 |
+
"api_spec": "/openapi.json",
|
13 |
+
"type": "matching",
|
14 |
+
"categories": ["humanitarian", "coordination"],
|
15 |
+
"tags": ["ngo", "aid", "matching"],
|
16 |
+
"status": "active",
|
17 |
+
"version": "1.0.0",
|
18 |
+
"capabilities": ["ngo_matching", "resource_allocation"],
|
19 |
+
"rate_limit": 100,
|
20 |
+
"timeout_seconds": 30,
|
21 |
+
"auth_required": false
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"id": "media-monitor-001",
|
25 |
+
"name": "Media Monitor",
|
26 |
+
"description": "Tracks and analyzes media coverage and social media for crisis events",
|
27 |
+
"endpoint": "https://dtka-collective-intelligence-media-monitoring-agent.hf.space/agent",
|
28 |
+
"file_url": "https://huggingface.co/spaces/dtka/collective-intelligence-media-monitoring-agent/resolve/main/",
|
29 |
+
"icon": "📰",
|
30 |
+
"api_spec": "/openapi.json",
|
31 |
+
"type": "monitoring",
|
32 |
+
"categories": ["media", "sentiment_analysis"],
|
33 |
+
"tags": ["news", "social_media", "sentiment"],
|
34 |
+
"status": "active",
|
35 |
+
"version": "1.0.0",
|
36 |
+
"capabilities": ["news_aggregation", "sentiment_analysis", "trend_detection"],
|
37 |
+
"rate_limit": 200,
|
38 |
+
"timeout_seconds": 20,
|
39 |
+
"auth_required": false
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"id": "policy-modeler-001",
|
43 |
+
"name": "Policy Modeler",
|
44 |
+
"description": "Models policy impacts and suggests regulatory responses to crises",
|
45 |
+
"endpoint": "https://dtka-collective-intelligence-policy-modeler-agent.hf.space/agent",
|
46 |
+
"file_url": "https://huggingface.co/spaces/dtka/collective-intelligence-policy-modeler-agent/resolve/main/",
|
47 |
+
"icon": "📜",
|
48 |
+
"api_spec": "/openapi.json",
|
49 |
+
"type": "modeling",
|
50 |
+
"categories": ["policy", "regulation"],
|
51 |
+
"tags": ["policy_analysis", "regulations", "impact_modeling"],
|
52 |
+
"status": "active",
|
53 |
+
"version": "1.0.0",
|
54 |
+
"capabilities": ["policy_simulation", "impact_analysis"],
|
55 |
+
"rate_limit": 50,
|
56 |
+
"timeout_seconds": 45,
|
57 |
+
"auth_required": true
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"id": "climate-sensor-001",
|
61 |
+
"name": "Climate Sensor",
|
62 |
+
"description": "Monitors and analyzes environmental and climate-related data",
|
63 |
+
"endpoint": "https://dtka-collective-intelligence-climate-sensor.hf.space/agent",
|
64 |
+
"file_url": "https://huggingface.co/spaces/dtka/collective-intelligence-climate-sensor/resolve/main/",
|
65 |
+
"icon": "🌦️",
|
66 |
+
"api_spec": "/openapi.json",
|
67 |
+
"type": "monitoring",
|
68 |
+
"categories": ["environment", "climate"],
|
69 |
+
"tags": ["sensor_data", "environmental_monitoring", "climate_data"],
|
70 |
+
"status": "active",
|
71 |
+
"version": "1.0.0",
|
72 |
+
"capabilities": ["sensor_data_analysis", "anomaly_detection"],
|
73 |
+
"rate_limit": 150,
|
74 |
+
"timeout_seconds": 25,
|
75 |
+
"auth_required": false
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"id": "public-health-001",
|
79 |
+
"name": "Public Health",
|
80 |
+
"description": "Tracks and analyzes public health data and disease outbreaks",
|
81 |
+
"endpoint": "https://dtka-collective-intelligence-public-health-agent.hf.space/agent",
|
82 |
+
"file_url": "https://huggingface.co/spaces/dtka/collective-intelligence-public-health-agent/resolve/main/",
|
83 |
+
"icon": "🏥",
|
84 |
+
"api_spec": "/openapi.json",
|
85 |
+
"type": "analysis",
|
86 |
+
"categories": ["health", "epidemiology"],
|
87 |
+
"tags": ["disease_tracking", "healthcare", "outbreak_analysis"],
|
88 |
+
"status": "active",
|
89 |
+
"version": "1.0.0",
|
90 |
+
"capabilities": ["disease_surveillance", "risk_assessment"],
|
91 |
+
"rate_limit": 75,
|
92 |
+
"timeout_seconds": 35,
|
93 |
+
"auth_required": true
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"id": "economic-forecast-001",
|
97 |
+
"name": "Economic Forecast",
|
98 |
+
"description": "Provides economic impact analysis and forecasting for crisis scenarios",
|
99 |
+
"endpoint": "https://dtka-collective-intelligence-economic-forecast-agent.hf.space/agent",
|
100 |
+
"file_url": "https://huggingface.co/spaces/dtka/collective-intelligence-economic-forecast-agent/resolve/main/",
|
101 |
+
"icon": "💹",
|
102 |
+
"api_spec": "/openapi.json",
|
103 |
+
"type": "forecasting",
|
104 |
+
"categories": ["economics", "finance"],
|
105 |
+
"tags": ["economic_analysis", "forecasting", "impact_assessment"],
|
106 |
+
"status": "active",
|
107 |
+
"version": "1.0.0",
|
108 |
+
"capabilities": ["economic_modeling", "trend_analysis"],
|
109 |
+
"rate_limit": 60,
|
110 |
+
"timeout_seconds": 40,
|
111 |
+
"auth_required": true
|
112 |
+
}
|
113 |
+
]
|
114 |
+
}
|
app.py
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import gradio as gr
|
4 |
+
import anthropic
|
5 |
+
import yaml
|
6 |
+
import hashlib
|
7 |
+
import json
|
8 |
+
|
9 |
+
# Anthropic API Setup
|
10 |
+
anthropic_client = anthropic.Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
|
11 |
+
|
12 |
+
# ---- Agent Discovery Logic ----
|
13 |
+
|
14 |
+
AGENT_ICONS = {
|
15 |
+
"Climate Sensor": "🌦️",
|
16 |
+
"Policy Modeler": "📜",
|
17 |
+
"Economic Forecast": "💹",
|
18 |
+
"Media Monitor": "📰",
|
19 |
+
"Public Health": "🏥",
|
20 |
+
"NGO Matcher": "🤝"
|
21 |
+
}
|
22 |
+
|
23 |
+
def fetch_registry():
|
24 |
+
# Load from local file first, fall back to remote if not found
|
25 |
+
local_registry = "agents_registry.json"
|
26 |
+
if os.path.exists(local_registry):
|
27 |
+
print("Loading agents from local registry file")
|
28 |
+
try:
|
29 |
+
with open(local_registry, 'r', encoding='utf-8') as f:
|
30 |
+
return json.load(f)
|
31 |
+
except Exception as e:
|
32 |
+
print(f"Error loading local registry: {e}")
|
33 |
+
|
34 |
+
# Fall back to remote registry
|
35 |
+
remote_url = "https://huggingface.co/spaces/dtka/collective-intelligence-orchestrator/resolve/main/agents_registry.json"
|
36 |
+
print(f"Fetching agents from remote registry: {remote_url}")
|
37 |
+
try:
|
38 |
+
res = requests.get(remote_url, timeout=5)
|
39 |
+
res.raise_for_status()
|
40 |
+
return res.json()
|
41 |
+
except Exception as e:
|
42 |
+
print(f"Error fetching remote registry: {e}")
|
43 |
+
return None
|
44 |
+
|
45 |
+
def fetch_agent_yaml(space_url):
|
46 |
+
try:
|
47 |
+
res = requests.get(f"{space_url}/agent.yaml")
|
48 |
+
return yaml.safe_load(res.text)
|
49 |
+
except:
|
50 |
+
return None
|
51 |
+
|
52 |
+
def compute_agent_embedding(text):
|
53 |
+
# Handle None or empty input
|
54 |
+
if not text:
|
55 |
+
return 0
|
56 |
+
# Simulated embedding using a hash — replace with real embedding logic if desired
|
57 |
+
return int(hashlib.md5(text.encode()).hexdigest(), 16) % 10000
|
58 |
+
|
59 |
+
def discover_agents_from_registry():
|
60 |
+
registry = fetch_registry()
|
61 |
+
if not registry or 'agents' not in registry:
|
62 |
+
print("No valid registry data found")
|
63 |
+
return [], [], []
|
64 |
+
|
65 |
+
tools = []
|
66 |
+
cards = []
|
67 |
+
index = []
|
68 |
+
|
69 |
+
for agent in registry['agents']:
|
70 |
+
if not agent.get('status') == 'active':
|
71 |
+
continue
|
72 |
+
|
73 |
+
try:
|
74 |
+
# Use metadata from registry or fetch from agent if needed
|
75 |
+
name = agent.get('name', 'Unnamed Agent')
|
76 |
+
description = agent.get('description', 'No description available')
|
77 |
+
endpoint = agent.get('endpoint')
|
78 |
+
icon = agent.get('icon', '')
|
79 |
+
|
80 |
+
# Create tool function using the agent's endpoint
|
81 |
+
def tool_func(input_text, agent_endpoint=endpoint, agent_name=name):
|
82 |
+
try:
|
83 |
+
resp = requests.post(
|
84 |
+
agent_endpoint,
|
85 |
+
json={"input": input_text},
|
86 |
+
timeout=agent.get('timeout_seconds', 30)
|
87 |
+
)
|
88 |
+
resp.raise_for_status()
|
89 |
+
return resp.json().get("output", "No structured output.")
|
90 |
+
except Exception as e:
|
91 |
+
print(f"Error calling {agent_name} agent: {str(e)}")
|
92 |
+
return f"Error: Failed to call {agent_name} agent - {str(e)}"
|
93 |
+
|
94 |
+
# Compute embedding for semantic search
|
95 |
+
emb = compute_agent_embedding(f"{name} {description} {' '.join(agent.get('tags', []))}")
|
96 |
+
|
97 |
+
# Add to tools with all necessary metadata
|
98 |
+
tools.append((
|
99 |
+
name,
|
100 |
+
icon,
|
101 |
+
description,
|
102 |
+
tool_func,
|
103 |
+
emb,
|
104 |
+
agent.get('categories', []),
|
105 |
+
agent.get('capabilities', [])
|
106 |
+
))
|
107 |
+
|
108 |
+
# Update index for semantic search
|
109 |
+
index.append((emb, name))
|
110 |
+
|
111 |
+
# Add card for UI
|
112 |
+
cards.append((icon, name, description, agent.get('categories', [])))
|
113 |
+
|
114 |
+
except Exception as e:
|
115 |
+
print(f"Error processing agent {agent.get('name', 'unknown')}: {str(e)}")
|
116 |
+
continue
|
117 |
+
|
118 |
+
print(f"Successfully loaded {len(tools)} agents from registry")
|
119 |
+
return tools, cards, index
|
120 |
+
|
121 |
+
# ---- Claude Orchestrator ----
|
122 |
+
|
123 |
+
def match_agents_by_vector(input_text, tools, index):
|
124 |
+
if not tools or not index:
|
125 |
+
return []
|
126 |
+
|
127 |
+
input_emb = compute_agent_embedding(input_text)
|
128 |
+
|
129 |
+
# Calculate similarity scores for all agents
|
130 |
+
scored_agents = []
|
131 |
+
for i, (emb, name) in enumerate(index):
|
132 |
+
# Simple similarity based on vector distance
|
133 |
+
similarity = 1 / (1 + abs(emb - input_emb))
|
134 |
+
scored_agents.append((similarity, tools[i]))
|
135 |
+
|
136 |
+
# Sort by similarity score (descending)
|
137 |
+
scored_agents.sort(reverse=True, key=lambda x: x[0])
|
138 |
+
|
139 |
+
# Return top matching agents (above threshold or top 3)
|
140 |
+
threshold = 0.3 # Adjust based on your needs
|
141 |
+
return [agent for score, agent in scored_agents if score > threshold][:5] # Limit to top 5 matches
|
142 |
+
|
143 |
+
def claude_conductor(message, history, tools=None, index=None):
|
144 |
+
if tools is None:
|
145 |
+
tools = []
|
146 |
+
if index is None:
|
147 |
+
index = []
|
148 |
+
|
149 |
+
selected_tools = match_agents_by_vector(message, tools, index)
|
150 |
+
|
151 |
+
tools_description = "\n".join(
|
152 |
+
f"- {icon} {name}: {desc} (Categories: {', '.join(categories) if categories else 'None'})"
|
153 |
+
for name, icon, desc, _, _, categories, _ in selected_tools
|
154 |
+
) if selected_tools else "No relevant tools matched."
|
155 |
+
|
156 |
+
# Format the conversation history for Claude
|
157 |
+
conversation = []
|
158 |
+
for user_msg, bot_msg in history:
|
159 |
+
if user_msg:
|
160 |
+
conversation.append({"role": "user", "content": user_msg})
|
161 |
+
if bot_msg:
|
162 |
+
conversation.append({"role": "assistant", "content": bot_msg})
|
163 |
+
|
164 |
+
# Add the current user message
|
165 |
+
conversation.append({"role": "user", "content": message})
|
166 |
+
|
167 |
+
# Create system prompt
|
168 |
+
system_prompt = """You are a coordinator of autonomous AI agents solving real-world crises.
|
169 |
+
Analyze the user's input and determine which tools to use to gather information.
|
170 |
+
Here are the available agents for this task:
|
171 |
+
{tools_description}
|
172 |
+
Provide a clear, concise response based on the available information."""
|
173 |
+
|
174 |
+
try:
|
175 |
+
# Call Claude API
|
176 |
+
response = anthropic_client.messages.create(
|
177 |
+
model="claude-3-sonnet-20240229",
|
178 |
+
max_tokens=1000,
|
179 |
+
system=system_prompt,
|
180 |
+
messages=conversation,
|
181 |
+
temperature=0.7
|
182 |
+
)
|
183 |
+
|
184 |
+
# Return the response text
|
185 |
+
if response.content and len(response.content) > 0:
|
186 |
+
return response.content[0].text
|
187 |
+
return "I couldn't generate a response. Please try again."
|
188 |
+
|
189 |
+
except Exception as e:
|
190 |
+
print(f"Error calling Claude API: {str(e)}")
|
191 |
+
return f"An error occurred while processing your request: {str(e)}"
|
192 |
+
|
193 |
+
# ---- Launch Gradio ChatInterface ----
|
194 |
+
|
195 |
+
if __name__ == "__main__":
|
196 |
+
print("Starting application...")
|
197 |
+
tools, cards, index = discover_agents_from_registry()
|
198 |
+
print(f"Discovered {len(tools)} tools, {len(cards)} cards, {len(index)} index entries")
|
199 |
+
if not tools:
|
200 |
+
print("WARNING: No tools discovered. The UI may not display correctly.")
|
201 |
+
|
202 |
+
with gr.Blocks(
|
203 |
+
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan"),
|
204 |
+
title="Collective Intelligence Orchestrator"
|
205 |
+
) as demo:
|
206 |
+
gr.Markdown("""
|
207 |
+
# 🧠 Collective Intelligence Orchestrator
|
208 |
+
_Activate a living swarm of AI agents._
|
209 |
+
|
210 |
+
Enter a real-world scenario (e.g., natural disaster, policy failure, humanitarian crisis), and let the orchestrator dynamically coordinate a swarm response using multiple autonomous MCP agents.
|
211 |
+
|
212 |
+
**Author**: [@dtka](https://huggingface.co/dtka)
|
213 |
+
**Project Docs**: [GitHub Repo](https://github.com/dtka/collective-intelligence-networks)
|
214 |
+
**Hackathon**: [Hugging Face MCP Hackathon](https://huggingface.co/Agents-MCP-Hackathon)
|
215 |
+
""")
|
216 |
+
|
217 |
+
with gr.Row():
|
218 |
+
with gr.Column(scale=1):
|
219 |
+
gr.Markdown("### 🧩 Available Agents")
|
220 |
+
if not cards:
|
221 |
+
gr.Markdown("⚠️ No agents discovered. Please check agents_registry.json or try again later.")
|
222 |
+
for icon, name, desc, categories in cards:
|
223 |
+
categories_html = f"<br><span style='font-size: 0.8em; color: #666;'><i>Categories: {', '.join(categories) if categories else 'General'}</i></span>" if categories else ""
|
224 |
+
gr.Markdown(
|
225 |
+
f"<b>{icon} {name}</b><br>"
|
226 |
+
f"<span style='font-size: 0.9em;'>{desc}</span>"
|
227 |
+
f"{categories_html}",
|
228 |
+
render=True,
|
229 |
+
elem_id="agent-card"
|
230 |
+
)
|
231 |
+
|
232 |
+
with gr.Column(scale=2):
|
233 |
+
# Create the chat interface with explicit buttons
|
234 |
+
with gr.Row():
|
235 |
+
with gr.Column(scale=8):
|
236 |
+
# Chatbot display
|
237 |
+
chatbot = gr.Chatbot(
|
238 |
+
height=500,
|
239 |
+
show_copy_button=True,
|
240 |
+
show_label=False,
|
241 |
+
container=True,
|
242 |
+
bubble_full_width=True,
|
243 |
+
placeholder="Start a conversation...",
|
244 |
+
elem_id="chatbot"
|
245 |
+
)
|
246 |
+
|
247 |
+
# Input area with buttons
|
248 |
+
with gr.Row():
|
249 |
+
msg = gr.Textbox(
|
250 |
+
placeholder="Describe a crisis or scenario...",
|
251 |
+
container=False,
|
252 |
+
scale=8,
|
253 |
+
min_width=200,
|
254 |
+
show_label=False
|
255 |
+
)
|
256 |
+
submit_btn = gr.Button("Send to Swarm", variant="primary", scale=1)
|
257 |
+
stop_btn = gr.Button("Stop", variant="stop", scale=1, visible=False)
|
258 |
+
|
259 |
+
# Additional buttons
|
260 |
+
with gr.Row():
|
261 |
+
clear_btn = gr.Button("Clear Chat")
|
262 |
+
retry_btn = gr.Button("Retry")
|
263 |
+
|
264 |
+
# Format messages for the chat interface
|
265 |
+
def format_messages(history):
|
266 |
+
formatted = []
|
267 |
+
for user_msg, bot_msg in history:
|
268 |
+
if user_msg:
|
269 |
+
formatted.append((user_msg, None))
|
270 |
+
if bot_msg is not None:
|
271 |
+
if formatted and formatted[-1][1] is None:
|
272 |
+
formatted[-1] = (formatted[-1][0], bot_msg)
|
273 |
+
else:
|
274 |
+
formatted.append((None, bot_msg))
|
275 |
+
return formatted
|
276 |
+
|
277 |
+
# Set up button click handlers
|
278 |
+
def user(user_message, history):
|
279 |
+
if not user_message.strip():
|
280 |
+
return "", history
|
281 |
+
return "", history + [[user_message, None]]
|
282 |
+
|
283 |
+
def bot(history):
|
284 |
+
if not history or not history[-1][0]:
|
285 |
+
return history
|
286 |
+
|
287 |
+
# Get the current message and previous conversation
|
288 |
+
current_message = history[-1][0]
|
289 |
+
prev_messages = history[:-1]
|
290 |
+
|
291 |
+
# Format history for Claude
|
292 |
+
formatted_history = []
|
293 |
+
for user_msg, bot_msg in prev_messages:
|
294 |
+
if user_msg:
|
295 |
+
formatted_history.append((user_msg, bot_msg or ""))
|
296 |
+
|
297 |
+
# Get response from Claude
|
298 |
+
try:
|
299 |
+
bot_message = claude_conductor(current_message, formatted_history, tools, index)
|
300 |
+
history[-1][1] = bot_message
|
301 |
+
except Exception as e:
|
302 |
+
print(f"Error in bot response: {e}")
|
303 |
+
history[-1][1] = "Sorry, I encountered an error. Please try again."
|
304 |
+
|
305 |
+
return history
|
306 |
+
|
307 |
+
# Message submission handler
|
308 |
+
def process_message(user_message, history):
|
309 |
+
if not user_message.strip():
|
310 |
+
return "", history
|
311 |
+
history = history + [[user_message, None]]
|
312 |
+
return "", history
|
313 |
+
|
314 |
+
# Connect UI elements
|
315 |
+
submit_event = msg.submit(
|
316 |
+
process_message,
|
317 |
+
[msg, chatbot],
|
318 |
+
[msg, chatbot],
|
319 |
+
queue=False
|
320 |
+
).then(
|
321 |
+
bot,
|
322 |
+
chatbot,
|
323 |
+
chatbot
|
324 |
+
)
|
325 |
+
|
326 |
+
submit_btn.click(
|
327 |
+
process_message,
|
328 |
+
[msg, chatbot],
|
329 |
+
[msg, chatbot],
|
330 |
+
queue=False
|
331 |
+
).then(
|
332 |
+
bot,
|
333 |
+
chatbot,
|
334 |
+
chatbot
|
335 |
+
)
|
336 |
+
|
337 |
+
# Clear chat button
|
338 |
+
clear_btn.click(lambda: [], None, chatbot, queue=False)
|
339 |
+
|
340 |
+
# Retry button
|
341 |
+
def retry_last(history):
|
342 |
+
if not history:
|
343 |
+
return history
|
344 |
+
if history[-1][1] is not None:
|
345 |
+
history[-1][1] = None
|
346 |
+
return history
|
347 |
+
|
348 |
+
retry_btn.click(
|
349 |
+
retry_last,
|
350 |
+
chatbot,
|
351 |
+
chatbot,
|
352 |
+
queue=False
|
353 |
+
).then(
|
354 |
+
bot,
|
355 |
+
chatbot,
|
356 |
+
chatbot
|
357 |
+
)
|
358 |
+
|
359 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==5.33.1
|
2 |
+
requests==2.32.3
|
3 |
+
pyyaml==6.0.2
|
4 |
+
anthropic==0.53.0
|
utils/discovery.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import gradio as gr
|
3 |
+
import yaml
|
4 |
+
|
5 |
+
def fetch_agent_yaml(space_url):
|
6 |
+
try:
|
7 |
+
res = requests.get(f"{space_url}/agent.yaml")
|
8 |
+
return yaml.safe_load(res.text)
|
9 |
+
except:
|
10 |
+
return None
|
11 |
+
|
12 |
+
def build_agent_tool(agent_info, endpoint_url):
|
13 |
+
def tool_func(input_text):
|
14 |
+
try:
|
15 |
+
resp = requests.post(f"{endpoint_url}/agent", json={"input": input_text}, timeout=10)
|
16 |
+
return resp.json().get("output", "No structured output.")
|
17 |
+
except Exception as e:
|
18 |
+
return f"Error: {str(e)}"
|
19 |
+
|
20 |
+
return gr.TextTool(
|
21 |
+
name=agent_info.get("name", "Unnamed Agent"),
|
22 |
+
description=agent_info.get("description", "No description."),
|
23 |
+
func=tool_func
|
24 |
+
)
|
25 |
+
|
26 |
+
def discover_agents_from_urls(agent_urls):
|
27 |
+
tools = []
|
28 |
+
for url in agent_urls:
|
29 |
+
metadata = fetch_agent_yaml(url)
|
30 |
+
if metadata:
|
31 |
+
tools.append(build_agent_tool(metadata, url))
|
32 |
+
return tools
|