Abid Ali Awan
Refine portfolio data extraction in financial agent: Enhance JSON response to include total investment field, improve markdown handling, and validate JSON structure for better accuracy. Update error messages in tools.py to include debug information for input received.
92d263d
import json | |
from datetime import datetime | |
from typing import List | |
import yfinance as yf | |
from langchain.tools import Tool | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
class FinancialTools: | |
def __init__(self, tavily_api_key: str): | |
self.tavily_search = TavilySearchResults(api_key=tavily_api_key) | |
def create_budget_planner(self) -> Tool: | |
def budget_planner(input_str: str) -> str: | |
"""Create a personalized budget plan with advanced features""" | |
try: | |
# Handle empty or invalid input | |
if not input_str or input_str.strip() == "": | |
input_str = '{"income": 5000, "expenses": {}}' | |
# Try to parse JSON, if it fails, try to extract values from text | |
try: | |
data = json.loads(input_str) | |
except json.JSONDecodeError: | |
# Fallback: extract income and expenses from text | |
import re | |
income_match = re.search(r"(\$?[\d,]+(?:\.\d{2})?)", input_str) | |
income = ( | |
float(income_match.group(1).replace("$", "").replace(",", "")) | |
if income_match | |
else 5000 | |
) | |
data = {"income": income, "expenses": {}} | |
income = data.get("income", 5000) | |
expenses = data.get("expenses", {}) | |
goals = data.get("savings_goals", {}) | |
debt = data.get("debt", {}) | |
# Calculate budget allocations using 50/30/20 rule | |
needs = income * 0.5 | |
wants = income * 0.3 | |
savings = income * 0.2 | |
total_expenses = sum(expenses.values()) | |
remaining = income - total_expenses | |
# Debt analysis | |
total_debt = sum(debt.values()) if debt else 0 | |
debt_to_income = (total_debt / income * 100) if income > 0 else 0 | |
# Emergency fund calculation (3-6 months of expenses) | |
emergency_fund_needed = total_expenses * 6 | |
emergency_fund_goal = goals.get("emergency_fund", 0) | |
# Calculate actual savings potential | |
debt_payments = debt.get("monthly_payments", 0) | |
available_for_savings = remaining - debt_payments | |
budget_plan = { | |
"monthly_income": income, | |
"recommended_allocation": { | |
"needs": needs, | |
"wants": wants, | |
"savings": savings, | |
}, | |
"current_expenses": expenses, | |
"total_expenses": total_expenses, | |
"remaining_budget": remaining, | |
"savings_rate": (available_for_savings / income * 100) | |
if income > 0 | |
else 0, | |
"debt_analysis": { | |
"total_debt": total_debt, | |
"debt_to_income_ratio": debt_to_income, | |
"monthly_payments": debt_payments, | |
}, | |
"emergency_fund": { | |
"recommended": emergency_fund_needed, | |
"current": emergency_fund_goal, | |
"progress": (emergency_fund_goal / emergency_fund_needed * 100) | |
if emergency_fund_needed > 0 | |
else 0, | |
}, | |
"savings_optimization": { | |
"available_monthly": available_for_savings, | |
"annual_savings_potential": available_for_savings * 12, | |
}, | |
"recommendations": [], | |
} | |
# Enhanced recommendations | |
if available_for_savings < savings: | |
budget_plan["recommendations"].append( | |
f"Increase savings by ${savings - available_for_savings:.2f}/month to reach 20% goal" | |
) | |
if debt_to_income > 36: | |
budget_plan["recommendations"].append( | |
f"High debt-to-income ratio ({debt_to_income:.1f}%). Consider debt consolidation." | |
) | |
if emergency_fund_goal < emergency_fund_needed: | |
monthly_needed = (emergency_fund_needed - emergency_fund_goal) / 12 | |
budget_plan["recommendations"].append( | |
f"Build emergency fund: save ${monthly_needed:.2f}/month for 12 months" | |
) | |
# Expense optimization suggestions | |
largest_expense = ( | |
max(expenses.items(), key=lambda x: x[1]) if expenses else None | |
) | |
if largest_expense and largest_expense[1] > income * 0.35: | |
budget_plan["recommendations"].append( | |
f"Your {largest_expense[0]} expense (${largest_expense[1]:.2f}) is high. Consider cost reduction." | |
) | |
return json.dumps(budget_plan, indent=2) | |
except Exception as e: | |
return f"Error creating budget plan: {str(e)}" | |
return Tool( | |
name="budget_planner", | |
description="Create personalized budget plans with income and expense analysis", | |
func=budget_planner, | |
) | |
def create_investment_analyzer(self) -> Tool: | |
def investment_analyzer(symbol: str) -> str: | |
"""Analyze stocks with advanced metrics, sector comparison, and risk assessment""" | |
try: | |
stock = yf.Ticker(symbol.upper()) | |
info = stock.info | |
hist = stock.history(period="1y") # Reduced from 2y to 1y for speed | |
if hist.empty: | |
return f"No data available for {symbol}" | |
# Calculate key metrics | |
current_price = info.get("currentPrice", hist["Close"].iloc[-1]) | |
pe_ratio = info.get("trailingPE", "N/A") | |
pb_ratio = info.get("priceToBook", "N/A") | |
dividend_yield = ( | |
info.get("dividendYield", 0) * 100 | |
if info.get("dividendYield") | |
else 0 | |
) | |
market_cap = info.get("marketCap", "N/A") | |
beta = info.get("beta", "N/A") | |
sector = info.get("sector", "Unknown") | |
industry = info.get("industry", "Unknown") | |
# Advanced technical indicators | |
sma_20 = hist["Close"].rolling(window=20).mean().iloc[-1] | |
sma_50 = ( | |
hist["Close"].rolling(window=50).mean().iloc[-1] | |
if len(hist) >= 50 | |
else None | |
) | |
sma_200 = ( | |
hist["Close"].rolling(window=200).mean().iloc[-1] | |
if len(hist) >= 200 | |
else None | |
) | |
# RSI calculation | |
delta = hist["Close"].diff() | |
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean() | |
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean() | |
rs = gain / loss | |
rsi = 100 - (100 / (1 + rs)).iloc[-1] | |
# Simplified MACD calculation | |
ema_12 = hist["Close"].ewm(span=12).mean() | |
ema_26 = hist["Close"].ewm(span=26).mean() | |
macd = ema_12 - ema_26 | |
macd_signal = macd.ewm(span=9).mean() | |
# Simplified Bollinger Bands (only what we need) | |
bb_middle = hist["Close"].rolling(window=20).mean() | |
bb_std_dev = hist["Close"].rolling(window=20).std() | |
bb_upper = bb_middle + (bb_std_dev * 2) | |
bb_lower = bb_middle - (bb_std_dev * 2) | |
# Simplified volatility analysis | |
volatility_30d = ( | |
hist["Close"].pct_change().rolling(30).std().iloc[-1] * 100 | |
) | |
# Value at Risk (VaR) - 5% level | |
returns = hist["Close"].pct_change().dropna() | |
var_5 = returns.quantile(0.05) * 100 | |
# Performance metrics | |
price_1m = hist["Close"].iloc[-22] if len(hist) >= 22 else None | |
price_3m = hist["Close"].iloc[-66] if len(hist) >= 66 else None | |
price_6m = hist["Close"].iloc[-132] if len(hist) >= 132 else None | |
price_1y = hist["Close"].iloc[-252] if len(hist) >= 252 else None | |
performance = {} | |
if price_1m: | |
performance["1_month"] = (current_price - price_1m) / price_1m * 100 | |
if price_3m: | |
performance["3_month"] = (current_price - price_3m) / price_3m * 100 | |
if price_6m: | |
performance["6_month"] = (current_price - price_6m) / price_6m * 100 | |
if price_1y: | |
performance["1_year"] = (current_price - price_1y) / price_1y * 100 | |
# Sharpe ratio calculation (using risk-free rate of 4%) | |
risk_free_rate = 0.04 | |
mean_return = returns.mean() * 252 | |
return_std = returns.std() * (252**0.5) | |
sharpe_ratio = ( | |
(mean_return - risk_free_rate) / return_std if return_std > 0 else 0 | |
) | |
# Risk assessment | |
risk_score = 0 | |
risk_factors = [] | |
if volatility_30d > 30: | |
risk_score += 2 | |
risk_factors.append("High volatility (>30%)") | |
elif volatility_30d > 20: | |
risk_score += 1 | |
risk_factors.append("Moderate volatility (20-30%)") | |
if isinstance(beta, (int, float)): | |
if beta > 1.5: | |
risk_score += 2 | |
risk_factors.append( | |
f"High beta ({beta:.2f}) - market sensitive" | |
) | |
elif beta > 1.2: | |
risk_score += 1 | |
risk_factors.append(f"Above-average beta ({beta:.2f})") | |
if var_5 < -5: | |
risk_score += 2 | |
risk_factors.append(f"High downside risk (VaR: {var_5:.1f}%)") | |
# Enhanced recommendation logic | |
recommendation = "HOLD" | |
confidence = 50 | |
reasoning = [] | |
# Technical analysis | |
if current_price < bb_lower.iloc[-1]: | |
recommendation = "BUY" | |
confidence += 20 | |
reasoning.append( | |
"Price below Bollinger Band lower bound (oversold)" | |
) | |
elif current_price > bb_upper.iloc[-1]: | |
recommendation = "SELL" | |
confidence += 15 | |
reasoning.append( | |
"Price above Bollinger Band upper bound (overbought)" | |
) | |
# RSI analysis | |
if rsi < 30: | |
if recommendation != "SELL": | |
recommendation = "BUY" | |
confidence += 15 | |
reasoning.append(f"RSI oversold ({rsi:.1f})") | |
elif rsi > 70: | |
if recommendation != "BUY": | |
recommendation = "SELL" | |
confidence += 10 | |
reasoning.append(f"RSI overbought ({rsi:.1f})") | |
# MACD analysis | |
if ( | |
macd.iloc[-1] > macd_signal.iloc[-1] | |
and macd.iloc[-2] <= macd_signal.iloc[-2] | |
): | |
if recommendation != "SELL": | |
recommendation = "BUY" | |
confidence += 10 | |
reasoning.append("MACD bullish crossover") | |
# Fundamental analysis | |
if isinstance(pe_ratio, (int, float)): | |
if pe_ratio < 15: | |
confidence += 10 | |
reasoning.append("Low P/E ratio suggests undervaluation") | |
elif pe_ratio > 30: | |
confidence -= 5 | |
reasoning.append("High P/E ratio suggests overvaluation") | |
# Risk adjustment | |
if risk_score >= 4: | |
if recommendation == "BUY": | |
recommendation = "HOLD" | |
confidence -= 15 | |
reasoning.append("High risk profile suggests caution") | |
analysis = { | |
"symbol": symbol.upper(), | |
"company_name": info.get("longName", symbol), | |
"sector": sector, | |
"industry": industry, | |
"current_price": f"${current_price:.2f}", | |
"market_cap": f"${market_cap:,.0f}" | |
if isinstance(market_cap, (int, float)) | |
else "N/A", | |
"fundamental_metrics": { | |
"pe_ratio": pe_ratio, | |
"pb_ratio": pb_ratio, | |
"dividend_yield": f"{dividend_yield:.2f}%", | |
"beta": beta, | |
"sharpe_ratio": f"{sharpe_ratio:.2f}", | |
}, | |
"technical_indicators": { | |
"sma_20": f"${sma_20:.2f}", | |
"sma_50": f"${sma_50:.2f}" if sma_50 else "N/A", | |
"sma_200": f"${sma_200:.2f}" if sma_200 else "N/A", | |
"rsi": f"{rsi:.1f}", | |
"macd": f"{macd.iloc[-1]:.2f}", | |
"bollinger_position": "Lower" | |
if current_price < bb_lower.iloc[-1] | |
else "Upper" | |
if current_price > bb_upper.iloc[-1] | |
else "Middle", | |
}, | |
"risk_assessment": { | |
"volatility_30d": f"{volatility_30d:.1f}%", | |
"value_at_risk_5%": f"{var_5:.1f}%", | |
"risk_score": f"{risk_score}/6", | |
"risk_factors": risk_factors, | |
"risk_level": "Low" | |
if risk_score <= 1 | |
else "Medium" | |
if risk_score <= 3 | |
else "High", | |
}, | |
"price_levels": { | |
"52_week_high": f"${info.get('fiftyTwoWeekHigh', 'N/A')}", | |
"52_week_low": f"${info.get('fiftyTwoWeekLow', 'N/A')}", | |
}, | |
"performance": {k: f"{v:.1f}%" for k, v in performance.items()}, | |
"recommendation": { | |
"action": recommendation, | |
"confidence": f"{min(max(confidence, 20), 95)}%", | |
"reasoning": reasoning, | |
"target_allocation": "5-10%" | |
if recommendation == "BUY" | |
else "0-5%" | |
if recommendation == "SELL" | |
else "3-7%", | |
}, | |
"last_updated": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
} | |
return json.dumps(analysis, indent=2) | |
except Exception as e: | |
return f"Error analyzing {symbol}: {str(e)}" | |
return Tool( | |
name="investment_analyzer", | |
description="Analyze stocks and provide investment recommendations", | |
func=investment_analyzer, | |
) | |
def create_market_trends_analyzer(self) -> Tool: | |
def market_trends(query: str) -> str: | |
"""Get comprehensive real-time market trends, news, and sector analysis""" | |
try: | |
# Get current year for search queries | |
current_year = datetime.now().year | |
# Status tracking for API calls | |
status_updates = [] | |
# Optimized single comprehensive search instead of multiple calls | |
comprehensive_query = f"stock market {query} trends analysis financial news {current_year} latest" | |
# Get primary market information | |
status_updates.append( | |
"🔍 Fetching latest market news via Tavily Search API..." | |
) | |
market_news = self.tavily_search.run(comprehensive_query) | |
status_updates.append("✅ Market news retrieved successfully") | |
# Quick market indices check (reduced to just S&P 500 and NASDAQ for speed) | |
index_data = {} | |
market_sentiment = {"overall": "Unknown", "note": "Limited data"} | |
try: | |
status_updates.append( | |
"📊 Fetching market indices via Yahoo Finance API..." | |
) | |
# Fetch only key indices for speed | |
key_indices = ["^GSPC", "^IXIC"] # S&P 500, NASDAQ | |
for index in key_indices: | |
index_names = {"^GSPC": "S&P 500", "^IXIC": "NASDAQ"} | |
status_updates.append( | |
f"📈 Getting {index_names[index]} data..." | |
) | |
ticker = yf.Ticker(index) | |
hist = ticker.history(period="2d") # Reduced period for speed | |
if not hist.empty: | |
current = hist["Close"].iloc[-1] | |
prev = hist["Close"].iloc[-2] if len(hist) > 1 else current | |
change = ((current - prev) / prev * 100) if prev != 0 else 0 | |
index_data[index_names[index]] = { | |
"current": round(current, 2), | |
"change_pct": round(change, 2), | |
"direction": "📈" | |
if change > 0 | |
else "📉" | |
if change < 0 | |
else "➡️", | |
} | |
status_updates.append( | |
"✅ Market indices data retrieved successfully" | |
) | |
# Simple sentiment based on available indices | |
if index_data: | |
status_updates.append("🧠 Analyzing market sentiment...") | |
positive_count = sum( | |
1 for data in index_data.values() if data["change_pct"] > 0 | |
) | |
total_count = len(index_data) | |
if positive_count >= total_count * 0.75: | |
sentiment = "🟢 Bullish" | |
elif positive_count <= total_count * 0.25: | |
sentiment = "🔴 Bearish" | |
else: | |
sentiment = "🟡 Mixed" | |
market_sentiment = { | |
"overall": sentiment, | |
"summary": f"{positive_count}/{total_count} indices positive", | |
} | |
status_updates.append("✅ Market sentiment analysis completed") | |
except Exception as index_error: | |
status_updates.append( | |
f"❌ Error fetching market indices: {str(index_error)}" | |
) | |
index_data = { | |
"error": f"Index data unavailable: {str(index_error)}" | |
} | |
# Extract key themes from search results | |
status_updates.append("🔍 Analyzing key market themes...") | |
key_themes = _extract_key_themes(market_news) | |
status_updates.append("✅ Theme analysis completed") | |
# Format output for better readability | |
def format_search_results(results): | |
"""Convert search results to readable format""" | |
if isinstance(results, list): | |
# Extract key information from search results | |
formatted = [] | |
for item in results[:3]: # Limit to top 3 results | |
if isinstance(item, dict): | |
title = item.get("title", "No title") | |
content = item.get( | |
"content", item.get("snippet", "No content") | |
) | |
formatted.append(f"• {title}: {content[:200]}...") | |
else: | |
formatted.append(f"• {str(item)[:200]}...") | |
return "\n".join(formatted) | |
elif isinstance(results, str): | |
return ( | |
results[:1000] + "..." if len(results) > 1000 else results | |
) | |
else: | |
return str(results)[:1000] | |
status_updates.append("📋 Compiling final analysis report...") | |
# Compile streamlined analysis | |
analysis = { | |
"query": query, | |
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
"api_execution_log": status_updates, | |
"market_summary": format_search_results(market_news), | |
"key_indices": index_data, | |
"market_sentiment": market_sentiment, | |
"key_themes": key_themes, | |
"note": "Real-time API status tracking enabled", | |
} | |
status_updates.append("✅ Analysis report completed successfully") | |
return json.dumps(analysis, indent=2, ensure_ascii=False) | |
except Exception as e: | |
return f"Error fetching market analysis: {str(e)}" | |
def _extract_key_themes(news_text) -> list: | |
"""Extract key themes from market news""" | |
themes = [] | |
keywords = { | |
"earnings": ["earnings", "quarterly results", "revenue", "profit"], | |
"fed_policy": [ | |
"federal reserve", | |
"interest rates", | |
"fed", | |
"monetary policy", | |
], | |
"inflation": ["inflation", "cpi", "price increases", "cost of living"], | |
"geopolitical": ["geopolitical", "war", "trade war", "sanctions"], | |
"technology": [ | |
"ai", | |
"artificial intelligence", | |
"tech stocks", | |
"innovation", | |
], | |
"recession": ["recession", "economic downturn", "market crash"], | |
} | |
# Handle both string and list inputs | |
if isinstance(news_text, list): | |
# Convert list to string | |
news_text = " ".join(str(item) for item in news_text) | |
elif not isinstance(news_text, str): | |
# Convert other types to string | |
news_text = str(news_text) | |
news_lower = news_text.lower() | |
for theme, terms in keywords.items(): | |
if any(term in news_lower for term in terms): | |
themes.append(theme.replace("_", " ").title()) | |
return themes[:5] # Return top 5 themes | |
return Tool( | |
name="market_trends", | |
description="Get real-time market trends and financial news", | |
func=market_trends, | |
) | |
def create_portfolio_analyzer(self) -> Tool: | |
def portfolio_analyzer(input_str: str) -> str: | |
"""Analyze portfolio performance and diversification""" | |
try: | |
import re | |
# Try to parse as JSON first (from OpenAI extraction) | |
total_investment = 0 | |
holdings_info = [] | |
try: | |
# First try to parse as JSON | |
data = json.loads(input_str) | |
if isinstance(data, dict): | |
holdings_info = data.get("holdings", []) | |
total_investment = data.get("total_investment", 0) | |
except: | |
# If JSON parsing fails, extract from natural language | |
pass | |
# If no JSON data found, extract from natural language using regex | |
if not holdings_info: | |
# Extract investment amount using improved patterns | |
def extract_investment_amount(text): | |
patterns = [ | |
r"(?:invested|investment|total|have)\s*(?:of)?\s*(?:\$)?(\d+(?:[,\d]*)?(?:\.\d+)?)\s*([KMB]?)\s*(?:USD|dollars?|\$)?", | |
r"(\d+(?:[,\d]*)?(?:\.\d+)?)\s*([KMB]?)\s*(?:USD|dollars?)", | |
r"\$(\d+(?:[,\d]*)?(?:\.\d+)?)\s*([KMB]?)", | |
] | |
for pattern in patterns: | |
match = re.search(pattern, text, re.IGNORECASE) | |
if match: | |
amount_str = match.group(1).replace(",", "") | |
suffix = match.group(2).upper() if len(match.groups()) > 1 else "" | |
multiplier = {"K": 1000, "M": 1000000, "B": 1000000000}.get(suffix, 1) | |
return float(amount_str) * multiplier | |
return 0 | |
if total_investment == 0: | |
total_investment = extract_investment_amount(input_str) | |
# Extract holdings using regex | |
def extract_holdings(text): | |
holdings = [] | |
# First try percentage patterns (with % symbol) | |
percentage_patterns = [ | |
r"([A-Z]{2,5})\s*[:\s]*(\d+(?:\.\d+)?)%", | |
r"([A-Z]{2,5}):\s*(\d+(?:\.\d+)?)%", | |
r"([A-Z]{2,5})\s+(\d+(?:\.\d+)?)%", | |
] | |
for pattern in percentage_patterns: | |
matches = re.findall(pattern, text, re.IGNORECASE) | |
if matches: | |
for symbol, percentage in matches: | |
holdings.append({ | |
"symbol": symbol.upper(), | |
"percentage": float(percentage) | |
}) | |
return holdings | |
# If no percentages found, try shares patterns (without % symbol) | |
shares_patterns = [ | |
r"([A-Z]{2,5})\s*[:\s]*(\d+(?:\.\d+)?)\s*(?!%)", | |
r"([A-Z]{2,5}):\s*(\d+(?:\.\d+)?)\s*(?!%)", | |
r"([A-Z]{2,5})\s+(\d+(?:\.\d+)?)\s*(?!%)", | |
] | |
for pattern in shares_patterns: | |
matches = re.findall(pattern, text, re.IGNORECASE) | |
if matches: | |
for symbol, shares in matches: | |
holdings.append({ | |
"symbol": symbol.upper(), | |
"shares": float(shares) | |
}) | |
return holdings | |
return holdings | |
holdings_info = extract_holdings(input_str) | |
# If no valid holdings found, return early to avoid using this tool | |
if not holdings_info: | |
# Debug: show what we received | |
return f"Portfolio analyzer debug - received input: {input_str[:200]}... No holdings found. Please provide portfolio details like 'AAPL 40%, MSFT 30%' or JSON format." | |
portfolio_data = [] | |
total_calculated_value = 0 | |
# Process each holding | |
for holding in holdings_info: | |
symbol = holding.get("symbol", "") | |
percentage = holding.get("percentage", 0) | |
shares = holding.get("shares", None) | |
if not symbol: | |
continue | |
try: | |
# Get current stock price | |
stock = yf.Ticker(symbol) | |
hist = stock.history(period="1d") | |
if not hist.empty: | |
current_price = hist["Close"].iloc[-1] | |
if shares is not None: | |
# Shares-based calculation | |
value = current_price * shares | |
allocation_percentage = percentage | |
else: | |
# Percentage-based calculation | |
value = total_investment * (percentage / 100) | |
allocation_percentage = percentage | |
shares = value / current_price if current_price > 0 else 0 | |
total_calculated_value += value | |
portfolio_data.append( | |
{ | |
"symbol": symbol, | |
"shares": round(shares, 2), | |
"current_price": f"${current_price:.2f}", | |
"value": value, | |
"allocation": allocation_percentage, | |
} | |
) | |
except Exception: | |
# Skip if can't get data but add placeholder | |
if percentage > 0: | |
value = total_investment * (percentage / 100) | |
portfolio_data.append( | |
{ | |
"symbol": symbol, | |
"shares": "N/A", | |
"current_price": "N/A", | |
"value": value, | |
"allocation": percentage, | |
} | |
) | |
# For percentage-based portfolios, use the original total investment | |
# For share-based portfolios, use calculated value | |
final_total_value = ( | |
total_investment | |
if total_investment > 0 and any(h.get("percentage", 0) > 0 for h in holdings_info) | |
else total_calculated_value | |
) | |
# Analysis and recommendations | |
analysis = { | |
"total_portfolio_value": f"${final_total_value:.2f}", | |
"number_of_holdings": len(portfolio_data), | |
"holdings": portfolio_data, | |
"recommendations": [], | |
} | |
# Diversification recommendations | |
if len(portfolio_data) < 5: | |
analysis["recommendations"].append( | |
"Consider diversifying with more holdings" | |
) | |
if portfolio_data: | |
max_allocation = max(item["allocation"] for item in portfolio_data) | |
if max_allocation > 40: | |
analysis["recommendations"].append( | |
f"High concentration risk: largest holding is {max_allocation:.1f}%" | |
) | |
elif max_allocation > 30: | |
analysis["recommendations"].append( | |
f"Moderate concentration risk: largest holding is {max_allocation:.1f}%" | |
) | |
# Check if allocations add up to 100% | |
total_allocation = sum(item["allocation"] for item in portfolio_data) | |
if abs(total_allocation - 100) > 5: | |
analysis["recommendations"].append( | |
f"Portfolio allocations total {total_allocation:.1f}% - consider rebalancing to 100%" | |
) | |
# Sector diversification recommendation | |
if len(portfolio_data) == 3: | |
analysis["recommendations"].append( | |
"Consider adding holdings from different sectors (healthcare, utilities, financials)" | |
) | |
return json.dumps(analysis, indent=2) | |
except Exception as e: | |
return f"Error analyzing portfolio: {str(e)}" | |
return Tool( | |
name="portfolio_analyzer", | |
description="Analyze portfolio performance and diversification. Input should include holdings like: [{'symbol': 'AAPL', 'shares': 100}]", | |
func=portfolio_analyzer, | |
) | |
def get_all_tools(self) -> List[Tool]: | |
return [ | |
self.create_budget_planner(), | |
self.create_investment_analyzer(), | |
self.create_market_trends_analyzer(), | |
self.create_portfolio_analyzer(), | |
] | |