File size: 33,938 Bytes
5ad2796 6f12f14 5ad2796 563fd53 6f12f14 563fd53 6f12f14 563fd53 6f12f14 563fd53 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 6f12f14 5ad2796 27965d3 6f12f14 d5c2e38 960de4c 6f12f14 d5c2e38 6bc1434 d5c2e38 6bc1434 d5c2e38 6bc1434 d5c2e38 6f12f14 960de4c 5ad2796 960de4c 5ad2796 960de4c 27965d3 960de4c 6f12f14 5a45108 5ad2796 fa3d0f6 960de4c fa3d0f6 27965d3 6f12f14 27965d3 6f12f14 960de4c c317aeb 960de4c 6f12f14 960de4c fa3d0f6 6f12f14 960de4c 6f12f14 5ad2796 c317aeb 6f12f14 c317aeb 6f12f14 5ad2796 960de4c 5ad2796 960de4c 27965d3 5ad2796 6f12f14 5ad2796 960de4c 27965d3 6f12f14 fa3d0f6 960de4c 6f12f14 960de4c 6f12f14 960de4c 6f12f14 960de4c 6f12f14 5ad2796 27965d3 5ad2796 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 |
import json
from datetime import datetime
from typing import List
import yfinance as yf
from langchain.tools import Tool
from langchain_community.tools.tavily_search import TavilySearchResults
class FinancialTools:
def __init__(self, tavily_api_key: str):
self.tavily_search = TavilySearchResults(api_key=tavily_api_key)
def create_budget_planner(self) -> Tool:
def budget_planner(input_str: str) -> str:
"""Create a personalized budget plan with advanced features"""
try:
# Handle empty or invalid input
if not input_str or input_str.strip() == "":
input_str = '{"income": 5000, "expenses": {}}'
# Try to parse JSON, if it fails, try to extract values from text
try:
data = json.loads(input_str)
except json.JSONDecodeError:
# Fallback: extract income and expenses from text
import re
income_match = re.search(r"(\$?[\d,]+(?:\.\d{2})?)", input_str)
income = (
float(income_match.group(1).replace("$", "").replace(",", ""))
if income_match
else 5000
)
data = {"income": income, "expenses": {}}
income = data.get("income", 5000)
expenses = data.get("expenses", {})
goals = data.get("savings_goals", {})
debt = data.get("debt", {})
# Calculate budget allocations using 50/30/20 rule
needs = income * 0.5
wants = income * 0.3
savings = income * 0.2
total_expenses = sum(expenses.values())
remaining = income - total_expenses
# Debt analysis
total_debt = sum(debt.values()) if debt else 0
debt_to_income = (total_debt / income * 100) if income > 0 else 0
# Emergency fund calculation (3-6 months of expenses)
emergency_fund_needed = total_expenses * 6
emergency_fund_goal = goals.get("emergency_fund", 0)
# Calculate actual savings potential
debt_payments = debt.get("monthly_payments", 0)
available_for_savings = remaining - debt_payments
budget_plan = {
"monthly_income": income,
"recommended_allocation": {
"needs": needs,
"wants": wants,
"savings": savings,
},
"current_expenses": expenses,
"total_expenses": total_expenses,
"remaining_budget": remaining,
"savings_rate": (available_for_savings / income * 100)
if income > 0
else 0,
"debt_analysis": {
"total_debt": total_debt,
"debt_to_income_ratio": debt_to_income,
"monthly_payments": debt_payments,
},
"emergency_fund": {
"recommended": emergency_fund_needed,
"current": emergency_fund_goal,
"progress": (emergency_fund_goal / emergency_fund_needed * 100)
if emergency_fund_needed > 0
else 0,
},
"savings_optimization": {
"available_monthly": available_for_savings,
"annual_savings_potential": available_for_savings * 12,
},
"recommendations": [],
}
# Enhanced recommendations
if available_for_savings < savings:
budget_plan["recommendations"].append(
f"Increase savings by ${savings - available_for_savings:.2f}/month to reach 20% goal"
)
if debt_to_income > 36:
budget_plan["recommendations"].append(
f"High debt-to-income ratio ({debt_to_income:.1f}%). Consider debt consolidation."
)
if emergency_fund_goal < emergency_fund_needed:
monthly_needed = (emergency_fund_needed - emergency_fund_goal) / 12
budget_plan["recommendations"].append(
f"Build emergency fund: save ${monthly_needed:.2f}/month for 12 months"
)
# Expense optimization suggestions
largest_expense = (
max(expenses.items(), key=lambda x: x[1]) if expenses else None
)
if largest_expense and largest_expense[1] > income * 0.35:
budget_plan["recommendations"].append(
f"Your {largest_expense[0]} expense (${largest_expense[1]:.2f}) is high. Consider cost reduction."
)
return json.dumps(budget_plan, indent=2)
except Exception as e:
return f"Error creating budget plan: {str(e)}"
return Tool(
name="budget_planner",
description="Create personalized budget plans with income and expense analysis",
func=budget_planner,
)
def create_investment_analyzer(self) -> Tool:
def investment_analyzer(symbol: str) -> str:
"""Analyze stocks with advanced metrics, sector comparison, and risk assessment"""
try:
stock = yf.Ticker(symbol.upper())
info = stock.info
hist = stock.history(period="1y") # Reduced from 2y to 1y for speed
if hist.empty:
return f"No data available for {symbol}"
# Calculate key metrics
current_price = info.get("currentPrice", hist["Close"].iloc[-1])
pe_ratio = info.get("trailingPE", "N/A")
pb_ratio = info.get("priceToBook", "N/A")
dividend_yield = (
info.get("dividendYield", 0) * 100
if info.get("dividendYield")
else 0
)
market_cap = info.get("marketCap", "N/A")
beta = info.get("beta", "N/A")
sector = info.get("sector", "Unknown")
industry = info.get("industry", "Unknown")
# Advanced technical indicators
sma_20 = hist["Close"].rolling(window=20).mean().iloc[-1]
sma_50 = (
hist["Close"].rolling(window=50).mean().iloc[-1]
if len(hist) >= 50
else None
)
sma_200 = (
hist["Close"].rolling(window=200).mean().iloc[-1]
if len(hist) >= 200
else None
)
# RSI calculation
delta = hist["Close"].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
rsi = 100 - (100 / (1 + rs)).iloc[-1]
# Simplified MACD calculation
ema_12 = hist["Close"].ewm(span=12).mean()
ema_26 = hist["Close"].ewm(span=26).mean()
macd = ema_12 - ema_26
macd_signal = macd.ewm(span=9).mean()
# Simplified Bollinger Bands (only what we need)
bb_middle = hist["Close"].rolling(window=20).mean()
bb_std_dev = hist["Close"].rolling(window=20).std()
bb_upper = bb_middle + (bb_std_dev * 2)
bb_lower = bb_middle - (bb_std_dev * 2)
# Simplified volatility analysis
volatility_30d = (
hist["Close"].pct_change().rolling(30).std().iloc[-1] * 100
)
# Value at Risk (VaR) - 5% level
returns = hist["Close"].pct_change().dropna()
var_5 = returns.quantile(0.05) * 100
# Performance metrics
price_1m = hist["Close"].iloc[-22] if len(hist) >= 22 else None
price_3m = hist["Close"].iloc[-66] if len(hist) >= 66 else None
price_6m = hist["Close"].iloc[-132] if len(hist) >= 132 else None
price_1y = hist["Close"].iloc[-252] if len(hist) >= 252 else None
performance = {}
if price_1m:
performance["1_month"] = (current_price - price_1m) / price_1m * 100
if price_3m:
performance["3_month"] = (current_price - price_3m) / price_3m * 100
if price_6m:
performance["6_month"] = (current_price - price_6m) / price_6m * 100
if price_1y:
performance["1_year"] = (current_price - price_1y) / price_1y * 100
# Sharpe ratio calculation (using risk-free rate of 4%)
risk_free_rate = 0.04
mean_return = returns.mean() * 252
return_std = returns.std() * (252**0.5)
sharpe_ratio = (
(mean_return - risk_free_rate) / return_std if return_std > 0 else 0
)
# Risk assessment
risk_score = 0
risk_factors = []
if volatility_30d > 30:
risk_score += 2
risk_factors.append("High volatility (>30%)")
elif volatility_30d > 20:
risk_score += 1
risk_factors.append("Moderate volatility (20-30%)")
if isinstance(beta, (int, float)):
if beta > 1.5:
risk_score += 2
risk_factors.append(
f"High beta ({beta:.2f}) - market sensitive"
)
elif beta > 1.2:
risk_score += 1
risk_factors.append(f"Above-average beta ({beta:.2f})")
if var_5 < -5:
risk_score += 2
risk_factors.append(f"High downside risk (VaR: {var_5:.1f}%)")
# Enhanced recommendation logic
recommendation = "HOLD"
confidence = 50
reasoning = []
# Technical analysis
if current_price < bb_lower.iloc[-1]:
recommendation = "BUY"
confidence += 20
reasoning.append(
"Price below Bollinger Band lower bound (oversold)"
)
elif current_price > bb_upper.iloc[-1]:
recommendation = "SELL"
confidence += 15
reasoning.append(
"Price above Bollinger Band upper bound (overbought)"
)
# RSI analysis
if rsi < 30:
if recommendation != "SELL":
recommendation = "BUY"
confidence += 15
reasoning.append(f"RSI oversold ({rsi:.1f})")
elif rsi > 70:
if recommendation != "BUY":
recommendation = "SELL"
confidence += 10
reasoning.append(f"RSI overbought ({rsi:.1f})")
# MACD analysis
if (
macd.iloc[-1] > macd_signal.iloc[-1]
and macd.iloc[-2] <= macd_signal.iloc[-2]
):
if recommendation != "SELL":
recommendation = "BUY"
confidence += 10
reasoning.append("MACD bullish crossover")
# Fundamental analysis
if isinstance(pe_ratio, (int, float)):
if pe_ratio < 15:
confidence += 10
reasoning.append("Low P/E ratio suggests undervaluation")
elif pe_ratio > 30:
confidence -= 5
reasoning.append("High P/E ratio suggests overvaluation")
# Risk adjustment
if risk_score >= 4:
if recommendation == "BUY":
recommendation = "HOLD"
confidence -= 15
reasoning.append("High risk profile suggests caution")
analysis = {
"symbol": symbol.upper(),
"company_name": info.get("longName", symbol),
"sector": sector,
"industry": industry,
"current_price": f"${current_price:.2f}",
"market_cap": f"${market_cap:,.0f}"
if isinstance(market_cap, (int, float))
else "N/A",
"fundamental_metrics": {
"pe_ratio": pe_ratio,
"pb_ratio": pb_ratio,
"dividend_yield": f"{dividend_yield:.2f}%",
"beta": beta,
"sharpe_ratio": f"{sharpe_ratio:.2f}",
},
"technical_indicators": {
"sma_20": f"${sma_20:.2f}",
"sma_50": f"${sma_50:.2f}" if sma_50 else "N/A",
"sma_200": f"${sma_200:.2f}" if sma_200 else "N/A",
"rsi": f"{rsi:.1f}",
"macd": f"{macd.iloc[-1]:.2f}",
"bollinger_position": "Lower"
if current_price < bb_lower.iloc[-1]
else "Upper"
if current_price > bb_upper.iloc[-1]
else "Middle",
},
"risk_assessment": {
"volatility_30d": f"{volatility_30d:.1f}%",
"value_at_risk_5%": f"{var_5:.1f}%",
"risk_score": f"{risk_score}/6",
"risk_factors": risk_factors,
"risk_level": "Low"
if risk_score <= 1
else "Medium"
if risk_score <= 3
else "High",
},
"price_levels": {
"52_week_high": f"${info.get('fiftyTwoWeekHigh', 'N/A')}",
"52_week_low": f"${info.get('fiftyTwoWeekLow', 'N/A')}",
},
"performance": {k: f"{v:.1f}%" for k, v in performance.items()},
"recommendation": {
"action": recommendation,
"confidence": f"{min(max(confidence, 20), 95)}%",
"reasoning": reasoning,
"target_allocation": "5-10%"
if recommendation == "BUY"
else "0-5%"
if recommendation == "SELL"
else "3-7%",
},
"last_updated": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
}
return json.dumps(analysis, indent=2)
except Exception as e:
return f"Error analyzing {symbol}: {str(e)}"
return Tool(
name="investment_analyzer",
description="Analyze stocks and provide investment recommendations",
func=investment_analyzer,
)
def create_market_trends_analyzer(self) -> Tool:
def market_trends(query: str) -> str:
"""Get comprehensive real-time market trends, news, and sector analysis"""
try:
# Get current year for search queries
current_year = datetime.now().year
# Status tracking for API calls
status_updates = []
# Optimized single comprehensive search instead of multiple calls
comprehensive_query = f"stock market {query} trends analysis financial news {current_year} latest"
# Get primary market information
status_updates.append(
"π Fetching latest market news via Tavily Search API..."
)
market_news = self.tavily_search.run(comprehensive_query)
status_updates.append("β
Market news retrieved successfully")
# Quick market indices check (reduced to just S&P 500 and NASDAQ for speed)
index_data = {}
market_sentiment = {"overall": "Unknown", "note": "Limited data"}
try:
status_updates.append(
"π Fetching market indices via Yahoo Finance API..."
)
# Fetch only key indices for speed
key_indices = ["^GSPC", "^IXIC"] # S&P 500, NASDAQ
for index in key_indices:
index_names = {"^GSPC": "S&P 500", "^IXIC": "NASDAQ"}
status_updates.append(
f"π Getting {index_names[index]} data..."
)
ticker = yf.Ticker(index)
hist = ticker.history(period="2d") # Reduced period for speed
if not hist.empty:
current = hist["Close"].iloc[-1]
prev = hist["Close"].iloc[-2] if len(hist) > 1 else current
change = ((current - prev) / prev * 100) if prev != 0 else 0
index_data[index_names[index]] = {
"current": round(current, 2),
"change_pct": round(change, 2),
"direction": "π"
if change > 0
else "π"
if change < 0
else "β‘οΈ",
}
status_updates.append(
"β
Market indices data retrieved successfully"
)
# Simple sentiment based on available indices
if index_data:
status_updates.append("π§ Analyzing market sentiment...")
positive_count = sum(
1 for data in index_data.values() if data["change_pct"] > 0
)
total_count = len(index_data)
if positive_count >= total_count * 0.75:
sentiment = "π’ Bullish"
elif positive_count <= total_count * 0.25:
sentiment = "π΄ Bearish"
else:
sentiment = "π‘ Mixed"
market_sentiment = {
"overall": sentiment,
"summary": f"{positive_count}/{total_count} indices positive",
}
status_updates.append("β
Market sentiment analysis completed")
except Exception as index_error:
status_updates.append(
f"β Error fetching market indices: {str(index_error)}"
)
index_data = {
"error": f"Index data unavailable: {str(index_error)}"
}
# Extract key themes from search results
status_updates.append("π Analyzing key market themes...")
key_themes = _extract_key_themes(market_news)
status_updates.append("β
Theme analysis completed")
# Format output for better readability
def format_search_results(results):
"""Convert search results to readable format"""
if isinstance(results, list):
# Extract key information from search results
formatted = []
for item in results[:3]: # Limit to top 3 results
if isinstance(item, dict):
title = item.get("title", "No title")
content = item.get(
"content", item.get("snippet", "No content")
)
formatted.append(f"β’ {title}: {content[:200]}...")
else:
formatted.append(f"β’ {str(item)[:200]}...")
return "\n".join(formatted)
elif isinstance(results, str):
return (
results[:1000] + "..." if len(results) > 1000 else results
)
else:
return str(results)[:1000]
status_updates.append("π Compiling final analysis report...")
# Compile streamlined analysis
analysis = {
"query": query,
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"api_execution_log": status_updates,
"market_summary": format_search_results(market_news),
"key_indices": index_data,
"market_sentiment": market_sentiment,
"key_themes": key_themes,
"note": "Real-time API status tracking enabled",
}
status_updates.append("β
Analysis report completed successfully")
return json.dumps(analysis, indent=2, ensure_ascii=False)
except Exception as e:
return f"Error fetching market analysis: {str(e)}"
def _extract_key_themes(news_text) -> list:
"""Extract key themes from market news"""
themes = []
keywords = {
"earnings": ["earnings", "quarterly results", "revenue", "profit"],
"fed_policy": [
"federal reserve",
"interest rates",
"fed",
"monetary policy",
],
"inflation": ["inflation", "cpi", "price increases", "cost of living"],
"geopolitical": ["geopolitical", "war", "trade war", "sanctions"],
"technology": [
"ai",
"artificial intelligence",
"tech stocks",
"innovation",
],
"recession": ["recession", "economic downturn", "market crash"],
}
# Handle both string and list inputs
if isinstance(news_text, list):
# Convert list to string
news_text = " ".join(str(item) for item in news_text)
elif not isinstance(news_text, str):
# Convert other types to string
news_text = str(news_text)
news_lower = news_text.lower()
for theme, terms in keywords.items():
if any(term in news_lower for term in terms):
themes.append(theme.replace("_", " ").title())
return themes[:5] # Return top 5 themes
return Tool(
name="market_trends",
description="Get real-time market trends and financial news",
func=market_trends,
)
def create_portfolio_analyzer(self) -> Tool:
def portfolio_analyzer(input_str: str) -> str:
"""Analyze portfolio performance and diversification"""
try:
import re
# Smart extraction using multiple approaches
total_investment = 0
holdings_info = []
# First, try to extract investment amount using improved patterns
def extract_investment_amount(text):
patterns = [
r"(?:invested|investment|total|have)\s*(?:of)?\s*(?:\$)?(\d+(?:[,\d]*)?(?:\.\d+)?)\s*([KMB]?)\s*(?:USD|dollars?|\$)?",
r"(\d+(?:[,\d]*)?(?:\.\d+)?)\s*([KMB]?)\s*(?:USD|dollars?)",
r"\$(\d+(?:[,\d]*)?(?:\.\d+)?)\s*([KMB]?)",
]
for pattern in patterns:
match = re.search(pattern, text, re.IGNORECASE)
if match:
amount_str = match.group(1).replace(",", "")
suffix = match.group(2).upper() if len(match.groups()) > 1 else ""
multiplier = {"K": 1000, "M": 1000000, "B": 1000000000}.get(suffix, 1)
return float(amount_str) * multiplier
return 0
total_investment = extract_investment_amount(input_str)
# Extract holdings - percentages vs shares
def extract_holdings(text):
holdings = []
# First try percentage patterns (with % symbol)
percentage_patterns = [
r"([A-Z]{2,5})\s*[:\s]*(\d+(?:\.\d+)?)%",
r"([A-Z]{2,5}):\s*(\d+(?:\.\d+)?)%",
r"([A-Z]{2,5})\s+(\d+(?:\.\d+)?)%",
]
for pattern in percentage_patterns:
matches = re.findall(pattern, text, re.IGNORECASE)
if matches:
for symbol, percentage in matches:
holdings.append({
"symbol": symbol.upper(),
"percentage": float(percentage)
})
return holdings
# If no percentages found, try shares patterns (without % symbol)
shares_patterns = [
r"([A-Z]{2,5})\s*[:\s]*(\d+(?:\.\d+)?)\s*(?!%)",
r"([A-Z]{2,5}):\s*(\d+(?:\.\d+)?)\s*(?!%)",
r"([A-Z]{2,5})\s+(\d+(?:\.\d+)?)\s*(?!%)",
]
for pattern in shares_patterns:
matches = re.findall(pattern, text, re.IGNORECASE)
if matches:
for symbol, shares in matches:
holdings.append({
"symbol": symbol.upper(),
"shares": float(shares)
})
return holdings
# If no percentage matches, try JSON format
if not holdings:
json_match = re.search(r"\{.*\}|\[.*\]", text, re.DOTALL)
if json_match:
try:
data = json.loads(json_match.group(0))
if isinstance(data, list):
holdings = data
elif isinstance(data, dict) and "holdings" in data:
holdings = data["holdings"]
except:
pass
return holdings
holdings_info = extract_holdings(input_str)
# If no valid holdings found, return early to avoid using this tool
if not holdings_info:
return "Portfolio analyzer requires specific holdings with percentages or shares. Please provide portfolio details like 'AAPL 40%, MSFT 30%' or JSON format."
portfolio_data = []
total_calculated_value = 0
# Process each holding
for holding in holdings_info:
symbol = holding.get("symbol", "")
percentage = holding.get("percentage", 0)
shares = holding.get("shares", None)
if not symbol:
continue
try:
# Get current stock price
stock = yf.Ticker(symbol)
hist = stock.history(period="1d")
if not hist.empty:
current_price = hist["Close"].iloc[-1]
if shares is not None:
# Shares-based calculation
value = current_price * shares
allocation_percentage = percentage
else:
# Percentage-based calculation
value = total_investment * (percentage / 100)
allocation_percentage = percentage
shares = value / current_price if current_price > 0 else 0
total_calculated_value += value
portfolio_data.append(
{
"symbol": symbol,
"shares": round(shares, 2),
"current_price": f"${current_price:.2f}",
"value": value,
"allocation": allocation_percentage,
}
)
except Exception:
# Skip if can't get data but add placeholder
if percentage > 0:
value = total_investment * (percentage / 100)
portfolio_data.append(
{
"symbol": symbol,
"shares": "N/A",
"current_price": "N/A",
"value": value,
"allocation": percentage,
}
)
# For percentage-based portfolios, use the original total investment
# For share-based portfolios, use calculated value
final_total_value = (
total_investment
if total_investment > 0 and any(h.get("percentage", 0) > 0 for h in holdings_info)
else total_calculated_value
)
# Analysis and recommendations
analysis = {
"total_portfolio_value": f"${final_total_value:.2f}",
"number_of_holdings": len(portfolio_data),
"holdings": portfolio_data,
"recommendations": [],
}
# Diversification recommendations
if len(portfolio_data) < 5:
analysis["recommendations"].append(
"Consider diversifying with more holdings"
)
if portfolio_data:
max_allocation = max(item["allocation"] for item in portfolio_data)
if max_allocation > 40:
analysis["recommendations"].append(
f"High concentration risk: largest holding is {max_allocation:.1f}%"
)
elif max_allocation > 30:
analysis["recommendations"].append(
f"Moderate concentration risk: largest holding is {max_allocation:.1f}%"
)
# Check if allocations add up to 100%
total_allocation = sum(item["allocation"] for item in portfolio_data)
if abs(total_allocation - 100) > 5:
analysis["recommendations"].append(
f"Portfolio allocations total {total_allocation:.1f}% - consider rebalancing to 100%"
)
# Sector diversification recommendation
if len(portfolio_data) == 3:
analysis["recommendations"].append(
"Consider adding holdings from different sectors (healthcare, utilities, financials)"
)
return json.dumps(analysis, indent=2)
except Exception as e:
return f"Error analyzing portfolio: {str(e)}"
return Tool(
name="portfolio_analyzer",
description="Analyze portfolio performance and diversification. Input should include holdings like: [{'symbol': 'AAPL', 'shares': 100}]",
func=portfolio_analyzer,
)
def get_all_tools(self) -> List[Tool]:
return [
self.create_budget_planner(),
self.create_investment_analyzer(),
self.create_market_trends_analyzer(),
self.create_portfolio_analyzer(),
]
|