File size: 34,578 Bytes
5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 d9e6f5f 0112c49 d9e6f5f 0112c49 d9e6f5f 0112c49 5ad2796 0112c49 5ad2796 563fd53 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 563fd53 5ad2796 0112c49 5ad2796 563fd53 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 0112c49 5ad2796 affe608 5ad2796 affe608 5ad2796 d9e6f5f 5ad2796 affe608 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 |
import json
import os
import time
from pathlib import Path
import gradio as gr
from gradio import ChatMessage
from agents.financial_agent import FinancialAdvisorAgent
from agents.tools import FinancialTools
# Avatar configuration
AVATAR_IMAGES = (
None,
"./public/images/fin_logo.png",
)
# Initialize tools and agent
financial_tools = FinancialTools(tavily_api_key=os.getenv("TAVILY_API_KEY"))
tools = financial_tools.get_all_tools()
agent = FinancialAdvisorAgent(tools=tools, openai_api_key=os.getenv("OPENAI_API_KEY"))
gr.set_static_paths(paths=[(Path.cwd() / "public" / "images").absolute()])
def analyze_data_with_repl(data_type, data):
"""Analyze financial data using Python REPL with comprehensive insights"""
if data_type == "budget":
try:
budget_data = json.loads(data)
categories = list(budget_data.get("current_expenses", {}).keys())
values = list(budget_data.get("current_expenses", {}).values())
income = budget_data.get("monthly_income", budget_data.get("income", 0))
if categories and values:
total_expenses = sum(values)
analysis_text = "π° **Comprehensive Budget Analysis**\n\n"
# Income vs Expenses Overview
analysis_text += "## π **Income vs Expenses Overview**\n"
analysis_text += f"- **Monthly Income**: ${income:,.0f}\n"
analysis_text += f"- **Total Expenses**: ${total_expenses:,.0f}\n"
if income > 0:
remaining = income - total_expenses
savings_rate = (remaining / income * 100) if income > 0 else 0
if remaining > 0:
analysis_text += f"- **π Surplus**: ${remaining:,.0f}\n"
analysis_text += f"- **π Savings Rate**: {savings_rate:.1f}%\n"
else:
analysis_text += f"- **π΄ Deficit**: ${abs(remaining):,.0f}\n"
analysis_text += (
f"- **β οΈ Overspending**: {abs(savings_rate):.1f}%\n"
)
# Expense Breakdown with Progress Bars
analysis_text += "\n## π³ **Expense Breakdown**\n"
for i, (category, amount) in enumerate(zip(categories, values)):
percentage = (
(amount / total_expenses * 100) if total_expenses > 0 else 0
)
income_percentage = (amount / income * 100) if income > 0 else 0
bar = "β" * min(int(percentage / 3), 30) # Max 30 chars
analysis_text += f"**{category.title()}**: ${amount:,.0f}\n"
analysis_text += f" ββ {percentage:.1f}% of expenses | {income_percentage:.1f}% of income {bar}\n\n"
# Financial Health Metrics
analysis_text += "## π **Financial Health Metrics**\n"
avg_expense = total_expenses / len(values)
largest_expense = max(values)
smallest_expense = min(values)
largest_category = categories[values.index(largest_expense)]
smallest_category = categories[values.index(smallest_expense)]
analysis_text += (
f"- **Average Category Expense**: ${avg_expense:,.0f}\n"
)
analysis_text += f"- **Highest Expense**: {largest_category} (${largest_expense:,.0f})\n"
analysis_text += f"- **Lowest Expense**: {smallest_category} (${smallest_expense:,.0f})\n"
analysis_text += (
f"- **Expense Range**: ${largest_expense - smallest_expense:,.0f}\n"
)
# Budget Recommendations
analysis_text += "\n## π‘ **Smart Budget Insights**\n"
# 50/30/20 Rule Analysis
if income > 0:
needs_target = income * 0.50
wants_target = income * 0.30
savings_target = income * 0.20
analysis_text += "**50/30/20 Rule Comparison:**\n"
analysis_text += f"- Needs Target (50%): ${needs_target:,.0f}\n"
analysis_text += f"- Wants Target (30%): ${wants_target:,.0f}\n"
analysis_text += f"- Savings Target (20%): ${savings_target:,.0f}\n"
if savings_rate >= 20:
analysis_text += "β
**Excellent savings rate!**\n"
elif savings_rate >= 10:
analysis_text += "β οΈ **Good savings, aim for 20%**\n"
else:
analysis_text += (
"π΄ **Consider reducing expenses to save more**\n"
)
# Category Warnings
for category, amount in zip(categories, values):
if income > 0:
cat_percentage = amount / income * 100
if (
category.lower() in ["rent", "housing"]
and cat_percentage > 30
):
analysis_text += f"β οΈ **Housing costs high**: {cat_percentage:.1f}% (recommend <30%)\n"
elif (
category.lower() in ["food", "dining"]
and cat_percentage > 15
):
analysis_text += f"β οΈ **Food costs high**: {cat_percentage:.1f}% (recommend <15%)\n"
return analysis_text
except Exception as e:
return f"Error analyzing budget data: {str(e)}"
elif data_type == "portfolio":
try:
portfolio_data = json.loads(data)
holdings = portfolio_data.get("holdings", [])
total_value = sum(holding.get("value", 0) for holding in holdings)
analysis_text = "π **Advanced Portfolio Analysis**\n\n"
# Portfolio Overview
analysis_text += "## πΌ **Portfolio Overview**\n"
analysis_text += f"- **Total Portfolio Value**: ${total_value:,.2f}\n"
analysis_text += f"- **Number of Holdings**: {len(holdings)}\n"
if holdings:
values = [holding.get("value", 0) for holding in holdings]
avg_holding = sum(values) / len(values)
max_holding = max(values)
min_holding = min(values)
analysis_text += f"- **Average Holding Size**: ${avg_holding:,.2f}\n"
analysis_text += f"- **Largest Position**: ${max_holding:,.2f}\n"
analysis_text += f"- **Smallest Position**: ${min_holding:,.2f}\n"
# Detailed Holdings breakdown
analysis_text += "\n## π **Holdings Breakdown**\n"
sorted_holdings = sorted(
holdings, key=lambda x: x.get("value", 0), reverse=True
)
for i, holding in enumerate(sorted_holdings, 1):
symbol = holding.get("symbol", "Unknown")
value = holding.get("value", 0)
shares = holding.get("shares", 0)
allocation = holding.get(
"allocation", (value / total_value * 100) if total_value > 0 else 0
)
sector = holding.get("sector", "Unknown")
# Calculate position concentration risk
risk_level = (
"π’ Low"
if allocation < 10
else "π‘ Medium"
if allocation < 25
else "π΄ High"
)
analysis_text += f"**#{i} {symbol}** - {sector}\n"
analysis_text += f" ββ Value: ${value:,.2f} | Shares: {shares:,.0f} | Weight: {allocation:.1f}%\n"
analysis_text += f" ββ Concentration Risk: {risk_level}\n\n"
# Sector analysis with advanced metrics
sectors = {}
sector_values = {}
for holding in holdings:
sector = holding.get("sector", "Unknown")
allocation = holding.get("allocation", 0)
value = holding.get("value", 0)
sectors[sector] = sectors.get(sector, 0) + allocation
sector_values[sector] = sector_values.get(sector, 0) + value
if sectors:
analysis_text += "## π **Sector Diversification Analysis**\n"
sorted_sectors = sorted(
sectors.items(), key=lambda x: x[1], reverse=True
)
for sector, allocation in sorted_sectors:
bar = "β" * min(int(allocation / 2), 30)
value = sector_values.get(sector, 0)
# Sector concentration assessment
if allocation > 40:
risk_emoji = "π΄"
risk_text = "Over-concentrated"
elif allocation > 25:
risk_emoji = "π‘"
risk_text = "Moderate concentration"
else:
risk_emoji = "π’"
risk_text = "Well diversified"
analysis_text += f"**{sector}**: {allocation:.1f}% (${value:,.2f}) {risk_emoji}\n"
analysis_text += f" ββ {bar} {risk_text}\n\n"
# Portfolio Health Metrics
analysis_text += "## π― **Portfolio Health Assessment**\n"
# Diversification Score
num_sectors = len(sectors)
if num_sectors >= 8:
diversification = "π’ Excellent"
elif num_sectors >= 5:
diversification = "π‘ Good"
else:
diversification = "π΄ Poor"
analysis_text += f"- **Sector Diversification**: {diversification} ({num_sectors} sectors)\n"
# Concentration Risk
if holdings:
top_3_allocation = sum(
sorted([h.get("allocation", 0) for h in holdings], reverse=True)[:3]
)
if top_3_allocation > 60:
concentration_risk = "π΄ High"
elif top_3_allocation > 40:
concentration_risk = "π‘ Medium"
else:
concentration_risk = "π’ Low"
analysis_text += f"- **Concentration Risk**: {concentration_risk} (Top 3: {top_3_allocation:.1f}%)\n"
# Portfolio Recommendations
analysis_text += "\n## π‘ **Portfolio Optimization Recommendations**\n"
# Check for over-concentration
for holding in holdings:
allocation = holding.get("allocation", 0)
if allocation > 25:
analysis_text += f"β οΈ **{holding.get('symbol', 'Unknown')}** is over-weighted at {allocation:.1f}% (consider rebalancing)\n"
# Sector recommendations
for sector, allocation in sectors.items():
if allocation > 40:
analysis_text += f"β οΈ **{sector}** sector over-weighted at {allocation:.1f}% (consider diversification)\n"
# Diversification suggestions
if num_sectors < 5:
analysis_text += "π‘ **Consider adding exposure to more sectors for better diversification**\n"
if len(holdings) < 10:
analysis_text += (
"π‘ **Consider adding more holdings to reduce single-stock risk**\n"
)
return analysis_text
except Exception as e:
return f"Error analyzing portfolio data: {str(e)}"
elif data_type == "stock":
try:
stock_data = json.loads(data)
symbol = stock_data.get("symbol", "Unknown")
price_str = stock_data.get("current_price", "0")
analysis_text = f"π **Comprehensive Stock Analysis: {symbol}**\n\n"
# Company Overview
analysis_text += "## π’ **Company Overview**\n"
analysis_text += f"- **Symbol**: {symbol}\n"
analysis_text += f"- **Current Price**: {price_str}\n"
analysis_text += f"- **Company**: {stock_data.get('company_name', 'N/A')}\n"
analysis_text += f"- **Sector**: {stock_data.get('sector', 'N/A')}\n"
analysis_text += f"- **Industry**: {stock_data.get('industry', 'N/A')}\n"
analysis_text += (
f"- **Market Cap**: {stock_data.get('market_cap', 'N/A')}\n\n"
)
# Financial Metrics
financials = stock_data.get("financials", {})
if financials:
analysis_text += "## πΉ **Key Financial Metrics**\n"
# Valuation metrics
pe_ratio = financials.get("pe_ratio", "N/A")
pb_ratio = financials.get("pb_ratio", "N/A")
ps_ratio = financials.get("ps_ratio", "N/A")
analysis_text += f"- **P/E Ratio**: {pe_ratio}"
if pe_ratio != "N/A" and isinstance(pe_ratio, (int, float)):
if pe_ratio < 15:
analysis_text += " π’ (Undervalued)"
elif pe_ratio > 25:
analysis_text += " π΄ (Potentially Overvalued)"
else:
analysis_text += " π‘ (Fairly Valued)"
analysis_text += "\n"
analysis_text += f"- **P/B Ratio**: {pb_ratio}\n"
analysis_text += f"- **P/S Ratio**: {ps_ratio}\n"
# Profitability metrics
analysis_text += f"- **ROE**: {financials.get('roe', 'N/A')}\n"
analysis_text += f"- **ROA**: {financials.get('roa', 'N/A')}\n"
analysis_text += (
f"- **Profit Margin**: {financials.get('profit_margin', 'N/A')}\n"
)
analysis_text += f"- **Revenue Growth**: {financials.get('revenue_growth', 'N/A')}\n\n"
# Performance analysis with trend indicators
performance = stock_data.get("performance", {})
if performance:
analysis_text += "## π **Performance Analysis**\n"
periods = ["1d", "1w", "1m", "3m", "6m", "1y", "ytd"]
for period in periods:
if period in performance:
return_pct = performance[period]
# Add trend indicators
if isinstance(return_pct, str) and "%" in return_pct:
try:
pct_value = float(return_pct.replace("%", ""))
if pct_value > 0:
trend = "π"
elif pct_value < 0:
trend = "π"
else:
trend = "β‘οΈ"
except:
trend = ""
else:
trend = ""
analysis_text += (
f"- **{period.upper()}**: {return_pct} {trend}\n"
)
analysis_text += "\n"
# Advanced Risk Assessment
risk_data = stock_data.get("risk_assessment", {})
if risk_data:
analysis_text += "## β οΈ **Risk Assessment**\n"
risk_level = risk_data.get("risk_level", "N/A")
volatility = risk_data.get("volatility_30d", "N/A")
beta = risk_data.get("beta", "N/A")
# Risk level with emoji indicators
if risk_level.lower() == "low":
risk_emoji = "π’"
elif risk_level.lower() == "medium":
risk_emoji = "π‘"
elif risk_level.lower() == "high":
risk_emoji = "π΄"
else:
risk_emoji = ""
analysis_text += f"- **Risk Level**: {risk_level} {risk_emoji}\n"
analysis_text += f"- **30-Day Volatility**: {volatility}\n"
analysis_text += f"- **Beta**: {beta}"
if beta != "N/A" and isinstance(beta, (int, float)):
if beta > 1.2:
analysis_text += " (High volatility vs market)"
elif beta < 0.8:
analysis_text += " (Low volatility vs market)"
else:
analysis_text += " (Similar to market)"
analysis_text += "\n\n"
# Technical Analysis
technical = stock_data.get("technical_analysis", {})
if technical:
analysis_text += "## π **Technical Analysis**\n"
analysis_text += f"- **50-Day MA**: {technical.get('ma_50', 'N/A')}\n"
analysis_text += f"- **200-Day MA**: {technical.get('ma_200', 'N/A')}\n"
analysis_text += f"- **RSI**: {technical.get('rsi', 'N/A')}\n"
analysis_text += (
f"- **Support Level**: {technical.get('support', 'N/A')}\n"
)
analysis_text += (
f"- **Resistance Level**: {technical.get('resistance', 'N/A')}\n\n"
)
# Investment Recommendation with detailed reasoning
recommendation = stock_data.get("recommendation", {})
if recommendation:
action = recommendation.get("action", "N/A")
confidence = recommendation.get("confidence", "N/A")
reasoning = recommendation.get("reasoning", "")
analysis_text += "## π‘ **Investment Recommendation**\n"
# Action with emoji
if action.lower() == "buy":
action_emoji = "π’"
elif action.lower() == "sell":
action_emoji = "π΄"
elif action.lower() == "hold":
action_emoji = "π‘"
else:
action_emoji = ""
analysis_text += f"- **Action**: {action} {action_emoji}\n"
analysis_text += f"- **Confidence**: {confidence}\n"
if reasoning:
analysis_text += f"- **Reasoning**: {reasoning}\n"
analysis_text += "\n"
# Additional Investment Considerations
analysis_text += "## π― **Investment Considerations**\n"
# Dividend info
dividend_yield = stock_data.get("dividend_yield", "N/A")
if dividend_yield != "N/A":
analysis_text += f"- **Dividend Yield**: {dividend_yield}\n"
# Analyst ratings
analyst_rating = stock_data.get("analyst_rating", "N/A")
if analyst_rating != "N/A":
analysis_text += f"- **Analyst Rating**: {analyst_rating}\n"
# Price targets
price_target = stock_data.get("price_target", "N/A")
if price_target != "N/A":
analysis_text += f"- **Price Target**: {price_target}\n"
# ESG score
esg_score = stock_data.get("esg_score", "N/A")
if esg_score != "N/A":
analysis_text += f"- **ESG Score**: {esg_score}\n"
return analysis_text
except Exception as e:
return f"Error analyzing stock data: {str(e)}"
return None
def determine_intended_tool(message):
"""Determine which tool the AI intends to use based on the message"""
message_lower = message.lower()
tool_detection_map = {
"budget_planner": [
"budget",
"income",
"expense",
"spending",
"allocat",
"monthly",
"plan",
"financial plan",
"money",
"track",
"categoriz",
"cost",
],
"investment_analyzer": [
"stock",
"invest",
"buy",
"sell",
"analyze",
"AAPL",
"GOOGL",
"TSLA",
"NVDA",
"NVIDIA",
"MSFT",
"AMZN",
"META",
"share",
"equity",
"ticker",
],
"portfolio_analyzer": [
"portfolio",
"holdings",
"allocation",
"diversif",
"asset",
"position",
],
"market_trends": [
"market",
"trend",
"news",
"sector",
"economic",
"latest",
"current",
],
}
tool_names = {
"budget_planner": "Budget Planner",
"investment_analyzer": "Investment Analyzer",
"market_trends": "Market Trends Analyzer",
"portfolio_analyzer": "Portfolio Analyzer",
}
for tool_key, keywords in tool_detection_map.items():
if any(keyword in message_lower for keyword in keywords):
return tool_key, tool_names.get(tool_key, tool_key)
return None, None
def determine_response_type(message):
"""Determine if user wants detailed report or short response"""
message_lower = message.lower()
# Keywords indicating detailed response preference
detailed_keywords = [
"detailed",
"detail",
"comprehensive",
"thorough",
"in-depth",
"full analysis",
"complete",
"report",
"breakdown",
"explain",
"elaborate",
"deep dive",
"extensive",
"detailed analysis",
"full report",
"comprehensive report",
]
# Keywords indicating short response preference
short_keywords = [
"quick",
"brief",
"short",
"summary",
"concise",
"simple",
"fast",
"just tell me",
"quickly",
"in short",
"tldr",
"bottom line",
]
# Check for detailed indicators first
if any(keyword in message_lower for keyword in detailed_keywords):
return "detailed"
# Check for short indicators
if any(keyword in message_lower for keyword in short_keywords):
return "short"
# Default to short response
return "short"
def process_financial_query(message, history):
"""Process user queries through the financial agent with streaming response"""
# Get the actual user message from the last entry in history
if not history or len(history) == 0:
return history
# Extract the last user message
last_user_message = None
for msg in reversed(history):
if msg["role"] == "user":
last_user_message = msg["content"]
break
if not last_user_message:
return history
# Convert Gradio history to agent format (excluding the last user message we just added)
agent_history = []
for i, msg in enumerate(history[:-1]): # Exclude the last message
agent_history.append(
{
"role": msg["role"],
"content": msg["content"]
if isinstance(msg["content"], str)
else str(msg["content"]),
}
)
# Start timer
start_time = time.time()
init_message_start_index = len(history)
try:
# Show what tool will be used and processing status
intended_tool_key, intended_tool_name = determine_intended_tool(
last_user_message
)
response_type = determine_response_type(last_user_message)
# Always show status for all tools with expected time estimates
if intended_tool_name:
if intended_tool_key == "market_trends":
status_msg = "π Fetching market news & analyzing trends (estimated 20-30 seconds)..."
elif intended_tool_key == "investment_analyzer":
status_msg = "π Analyzing stock data & calculating metrics (estimated 10-15 seconds)..."
elif intended_tool_key == "budget_planner":
status_msg = "π° Processing budget analysis (estimated 5-10 seconds)..."
elif intended_tool_key == "portfolio_analyzer":
status_msg = "π Analyzing portfolio data (estimated 8-12 seconds)..."
else:
status_msg = (
f"π Using {intended_tool_name} (estimated 5-15 seconds)..."
)
history.append(ChatMessage(role="assistant", content=status_msg))
yield history
else:
# If no tool detected, show generic processing message
history.append(
ChatMessage(
role="assistant",
content="π§ Processing your request (estimated 10-15 seconds)...",
)
)
yield history
# Process message through agent
response, tool_used, tool_result, all_tools, all_results = (
agent.process_message_with_details(last_user_message, agent_history)
)
# Clear the processing message now that tool is complete
if len(history) > init_message_start_index:
history.pop() # Remove the processing message
# Step 5: Show tool execution results
if all_tools and all_results:
# Remove initialization messages but keep all previous conversation and tool info
history = history[:init_message_start_index]
tool_names = {
"budget_planner": "Budget Planner",
"investment_analyzer": "Investment Analyzer",
"market_trends": "Market Trends Analyzer",
"portfolio_analyzer": "Portfolio Analyzer",
}
tool_emojis = {
"Budget Planner": "π°",
"Investment Analyzer": "π",
"Market Trends Analyzer": "π°",
"Portfolio Analyzer": "π",
}
# Show results for all tools used
for i, (used_tool, result) in enumerate(zip(all_tools, all_results)):
tool_display_name = tool_names.get(used_tool, used_tool)
if result:
# Format tool result for display
try:
import json
if result.startswith("{") or result.startswith("["):
# Pretty format JSON output
parsed_result = json.loads(result)
# Truncate very long results for display
if len(str(parsed_result)) > 2000:
# Show summary for long results
if isinstance(parsed_result, dict):
summary = {
k: f"[{type(v).__name__}]"
if isinstance(v, (list, dict))
else v
for k, v in list(parsed_result.items())[:10]
}
display_result = f"```json\n{json.dumps(summary, indent=2)}\n... (truncated)\n```"
else:
display_result = f"```json\n{json.dumps(parsed_result, indent=2)[:1000]}...\n```"
else:
formatted_result = json.dumps(parsed_result, indent=2)
display_result = f"```json\n{formatted_result}\n```"
else:
# Truncate non-JSON results
display_result = (
result[:1000] + "..." if len(result) > 1000 else result
)
except Exception:
display_result = (
str(result)[:1000] + "..."
if len(str(result)) > 1000
else str(result)
)
tool_emoji = tool_emojis.get(tool_display_name, "π§")
collapsible_content = f"""
<details>
<summary><strong>{tool_emoji} {tool_display_name} Results</strong> - Click to expand</summary>
{display_result}
</details>
"""
history.append(
ChatMessage(
role="assistant",
content=collapsible_content,
)
)
yield history
# Add visualization for all applicable tools
if all_tools and all_results:
for used_tool, result in zip(all_tools, all_results):
if result and used_tool in [
"budget_planner",
"portfolio_analyzer",
"investment_analyzer",
]:
viz_type = {
"budget_planner": "budget",
"portfolio_analyzer": "portfolio",
"investment_analyzer": "stock",
}.get(used_tool)
try:
analysis_data = analyze_data_with_repl(viz_type, result)
if analysis_data:
tool_display_name = {
"budget_planner": "Budget",
"portfolio_analyzer": "Portfolio",
"investment_analyzer": "Stock",
}.get(used_tool, "Data")
# Create collapsible data analysis output
collapsible_analysis = f"""
<details>
<summary><strong>π {tool_display_name} Data Analysis</strong> - Click to expand</summary>
{analysis_data}
</details>
"""
history.append(
ChatMessage(
role="assistant",
content=collapsible_analysis,
)
)
yield history
except Exception:
# Silently continue if analysis fails
pass
# Stream the final response in real-time using LLM streaming
if tool_used and tool_result:
# Use real LLM streaming with response type
streaming_content = ""
history.append(ChatMessage(role="assistant", content=""))
for chunk in agent.stream_response(
last_user_message, tool_result, tool_used, response_type
):
streaming_content += chunk
history[-1] = ChatMessage(role="assistant", content=streaming_content)
yield history
else:
# Fallback for non-streaming response
history.append(ChatMessage(role="assistant", content=response))
yield history
elapsed = time.time() - start_time
except Exception as e:
elapsed = time.time() - start_time
history[-1] = ChatMessage(
role="assistant",
content=f"I encountered an error while processing your request: {str(e)}. Please try rephrasing your question.",
metadata={"title": f"π₯ Error ({elapsed:.1f}s)"},
)
yield history
# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Base(), title="Financial Advisory Agent") as demo:
gr.HTML("""<center><img src="/gradio_api/file=public/images/fin_logo.png" alt="Fin Logo" style="width: 50px; vertical-align: middle;">
<h1 style="text-align: center;">AI Financial Advisory Agent</h1>
Your AI-powered financial advisor for budgeting, investments, portfolio analysis, and market trends.
</center>
""")
chatbot = gr.Chatbot(
type="messages",
scale=2,
height=400,
avatar_images=AVATAR_IMAGES,
show_copy_button=True,
)
with gr.Row(equal_height=True):
msg = gr.Textbox(
placeholder="Ask me about budgeting, investments, or any financial topic...",
show_label=False,
scale=19,
autofocus=True,
)
submit = gr.Button("Send", variant="primary", scale=1, min_width=60)
# Example queries
example_queries = [
"Analyze NVDA stock and tell me if it's a good investment",
"Tell me more about NVIDIA stocks",
"Help me create a budget with $5000 monthly income and expenses: rent $1500, food $500, utilities $200",
"What are the latest market trends in tech stocks?",
"Analyze my portfolio: {'holdings': [{'symbol': 'AAPL', 'shares': 100}, {'symbol': 'GOOGL', 'shares': 50}]}",
]
gr.Examples(examples=example_queries, inputs=msg, label="Example Queries")
# Handle message submission
def user_submit(message, history):
if not message.strip():
return "", history, gr.update(interactive=True), gr.update(interactive=True)
history = history + [ChatMessage(role="user", content=message)]
return "", history, gr.update(interactive=False), gr.update(interactive=False)
def enable_input():
return gr.update(interactive=True), gr.update(interactive=True)
# Connect events
submit_event = (
msg.submit(user_submit, [msg, chatbot], [msg, chatbot, msg, submit])
.then(process_financial_query, [msg, chatbot], chatbot)
.then(enable_input, [], [msg, submit])
)
click_event = (
submit.click(user_submit, [msg, chatbot], [msg, chatbot, msg, submit])
.then(process_financial_query, [msg, chatbot], chatbot)
.then(enable_input, [], [msg, submit])
)
# Add like functionality for feedback
def like_handler(evt: gr.LikeData):
pass
chatbot.like(like_handler)
if __name__ == "__main__":
demo.launch(ssr_mode=False)
|