Abid Ali Awan
commited on
Commit
Β·
0112c49
1
Parent(s):
42236b2
Refactor app.py: Improve code readability and structure by consolidating conditional statements, enhancing string formatting, and ensuring consistent spacing throughout the analysis functions for budget, portfolio, and stock data.
Browse files
app.py
CHANGED
@@ -37,33 +37,37 @@ def analyze_data_with_repl(data_type, data):
|
|
37 |
if categories and values:
|
38 |
total_expenses = sum(values)
|
39 |
analysis_text = "π° **Comprehensive Budget Analysis**\n\n"
|
40 |
-
|
41 |
# Income vs Expenses Overview
|
42 |
analysis_text += "## π **Income vs Expenses Overview**\n"
|
43 |
analysis_text += f"- **Monthly Income**: ${income:,.0f}\n"
|
44 |
analysis_text += f"- **Total Expenses**: ${total_expenses:,.0f}\n"
|
45 |
-
|
46 |
if income > 0:
|
47 |
remaining = income - total_expenses
|
48 |
savings_rate = (remaining / income * 100) if income > 0 else 0
|
49 |
-
|
50 |
if remaining > 0:
|
51 |
analysis_text += f"- **π Surplus**: ${remaining:,.0f}\n"
|
52 |
analysis_text += f"- **π Savings Rate**: {savings_rate:.1f}%\n"
|
53 |
else:
|
54 |
analysis_text += f"- **π΄ Deficit**: ${abs(remaining):,.0f}\n"
|
55 |
-
analysis_text +=
|
56 |
-
|
|
|
|
|
57 |
# Expense Breakdown with Progress Bars
|
58 |
analysis_text += "\n## π³ **Expense Breakdown**\n"
|
59 |
for i, (category, amount) in enumerate(zip(categories, values)):
|
60 |
-
percentage = (
|
|
|
|
|
61 |
income_percentage = (amount / income * 100) if income > 0 else 0
|
62 |
bar = "β" * min(int(percentage / 3), 30) # Max 30 chars
|
63 |
-
|
64 |
analysis_text += f"**{category.title()}**: ${amount:,.0f}\n"
|
65 |
analysis_text += f" ββ {percentage:.1f}% of expenses | {income_percentage:.1f}% of income {bar}\n\n"
|
66 |
-
|
67 |
# Financial Health Metrics
|
68 |
analysis_text += "## π **Financial Health Metrics**\n"
|
69 |
avg_expense = total_expenses / len(values)
|
@@ -71,42 +75,54 @@ def analyze_data_with_repl(data_type, data):
|
|
71 |
smallest_expense = min(values)
|
72 |
largest_category = categories[values.index(largest_expense)]
|
73 |
smallest_category = categories[values.index(smallest_expense)]
|
74 |
-
|
75 |
-
analysis_text +=
|
|
|
|
|
76 |
analysis_text += f"- **Highest Expense**: {largest_category} (${largest_expense:,.0f})\n"
|
77 |
analysis_text += f"- **Lowest Expense**: {smallest_category} (${smallest_expense:,.0f})\n"
|
78 |
-
analysis_text +=
|
79 |
-
|
|
|
|
|
80 |
# Budget Recommendations
|
81 |
analysis_text += "\n## π‘ **Smart Budget Insights**\n"
|
82 |
-
|
83 |
# 50/30/20 Rule Analysis
|
84 |
if income > 0:
|
85 |
needs_target = income * 0.50
|
86 |
wants_target = income * 0.30
|
87 |
savings_target = income * 0.20
|
88 |
-
|
89 |
-
analysis_text +=
|
90 |
analysis_text += f"- Needs Target (50%): ${needs_target:,.0f}\n"
|
91 |
analysis_text += f"- Wants Target (30%): ${wants_target:,.0f}\n"
|
92 |
analysis_text += f"- Savings Target (20%): ${savings_target:,.0f}\n"
|
93 |
-
|
94 |
if savings_rate >= 20:
|
95 |
analysis_text += "β
**Excellent savings rate!**\n"
|
96 |
elif savings_rate >= 10:
|
97 |
analysis_text += "β οΈ **Good savings, aim for 20%**\n"
|
98 |
else:
|
99 |
-
analysis_text +=
|
100 |
-
|
|
|
|
|
101 |
# Category Warnings
|
102 |
for category, amount in zip(categories, values):
|
103 |
if income > 0:
|
104 |
-
cat_percentage =
|
105 |
-
if
|
|
|
|
|
|
|
106 |
analysis_text += f"β οΈ **Housing costs high**: {cat_percentage:.1f}% (recommend <30%)\n"
|
107 |
-
elif
|
|
|
|
|
|
|
108 |
analysis_text += f"β οΈ **Food costs high**: {cat_percentage:.1f}% (recommend <15%)\n"
|
109 |
-
|
110 |
return analysis_text
|
111 |
except Exception as e:
|
112 |
return f"Error analyzing budget data: {str(e)}"
|
@@ -116,42 +132,52 @@ def analyze_data_with_repl(data_type, data):
|
|
116 |
portfolio_data = json.loads(data)
|
117 |
holdings = portfolio_data.get("holdings", [])
|
118 |
total_value = sum(holding.get("value", 0) for holding in holdings)
|
119 |
-
|
120 |
analysis_text = "π **Advanced Portfolio Analysis**\n\n"
|
121 |
-
|
122 |
# Portfolio Overview
|
123 |
analysis_text += "## πΌ **Portfolio Overview**\n"
|
124 |
analysis_text += f"- **Total Portfolio Value**: ${total_value:,.2f}\n"
|
125 |
analysis_text += f"- **Number of Holdings**: {len(holdings)}\n"
|
126 |
-
|
127 |
if holdings:
|
128 |
values = [holding.get("value", 0) for holding in holdings]
|
129 |
avg_holding = sum(values) / len(values)
|
130 |
max_holding = max(values)
|
131 |
min_holding = min(values)
|
132 |
-
|
133 |
analysis_text += f"- **Average Holding Size**: ${avg_holding:,.2f}\n"
|
134 |
analysis_text += f"- **Largest Position**: ${max_holding:,.2f}\n"
|
135 |
analysis_text += f"- **Smallest Position**: ${min_holding:,.2f}\n"
|
136 |
-
|
137 |
# Detailed Holdings breakdown
|
138 |
analysis_text += "\n## π **Holdings Breakdown**\n"
|
139 |
-
sorted_holdings = sorted(
|
140 |
-
|
|
|
|
|
141 |
for i, holding in enumerate(sorted_holdings, 1):
|
142 |
symbol = holding.get("symbol", "Unknown")
|
143 |
value = holding.get("value", 0)
|
144 |
shares = holding.get("shares", 0)
|
145 |
-
allocation = holding.get(
|
|
|
|
|
146 |
sector = holding.get("sector", "Unknown")
|
147 |
-
|
148 |
# Calculate position concentration risk
|
149 |
-
risk_level =
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
analysis_text += f"**#{i} {symbol}** - {sector}\n"
|
152 |
analysis_text += f" ββ Value: ${value:,.2f} | Shares: {shares:,.0f} | Weight: {allocation:.1f}%\n"
|
153 |
analysis_text += f" ββ Concentration Risk: {risk_level}\n\n"
|
154 |
-
|
155 |
# Sector analysis with advanced metrics
|
156 |
sectors = {}
|
157 |
sector_values = {}
|
@@ -159,18 +185,20 @@ def analyze_data_with_repl(data_type, data):
|
|
159 |
sector = holding.get("sector", "Unknown")
|
160 |
allocation = holding.get("allocation", 0)
|
161 |
value = holding.get("value", 0)
|
162 |
-
|
163 |
sectors[sector] = sectors.get(sector, 0) + allocation
|
164 |
sector_values[sector] = sector_values.get(sector, 0) + value
|
165 |
-
|
166 |
if sectors:
|
167 |
analysis_text += "## π **Sector Diversification Analysis**\n"
|
168 |
-
sorted_sectors = sorted(
|
169 |
-
|
|
|
|
|
170 |
for sector, allocation in sorted_sectors:
|
171 |
bar = "β" * min(int(allocation / 2), 30)
|
172 |
value = sector_values.get(sector, 0)
|
173 |
-
|
174 |
# Sector concentration assessment
|
175 |
if allocation > 40:
|
176 |
risk_emoji = "π΄"
|
@@ -181,13 +209,13 @@ def analyze_data_with_repl(data_type, data):
|
|
181 |
else:
|
182 |
risk_emoji = "π’"
|
183 |
risk_text = "Well diversified"
|
184 |
-
|
185 |
analysis_text += f"**{sector}**: {allocation:.1f}% (${value:,.2f}) {risk_emoji}\n"
|
186 |
analysis_text += f" ββ {bar} {risk_text}\n\n"
|
187 |
-
|
188 |
# Portfolio Health Metrics
|
189 |
analysis_text += "## π― **Portfolio Health Assessment**\n"
|
190 |
-
|
191 |
# Diversification Score
|
192 |
num_sectors = len(sectors)
|
193 |
if num_sectors >= 8:
|
@@ -196,42 +224,46 @@ def analyze_data_with_repl(data_type, data):
|
|
196 |
diversification = "π‘ Good"
|
197 |
else:
|
198 |
diversification = "π΄ Poor"
|
199 |
-
|
200 |
analysis_text += f"- **Sector Diversification**: {diversification} ({num_sectors} sectors)\n"
|
201 |
-
|
202 |
# Concentration Risk
|
203 |
if holdings:
|
204 |
-
top_3_allocation = sum(
|
|
|
|
|
205 |
if top_3_allocation > 60:
|
206 |
concentration_risk = "π΄ High"
|
207 |
elif top_3_allocation > 40:
|
208 |
concentration_risk = "π‘ Medium"
|
209 |
else:
|
210 |
concentration_risk = "π’ Low"
|
211 |
-
|
212 |
analysis_text += f"- **Concentration Risk**: {concentration_risk} (Top 3: {top_3_allocation:.1f}%)\n"
|
213 |
-
|
214 |
# Portfolio Recommendations
|
215 |
analysis_text += "\n## π‘ **Portfolio Optimization Recommendations**\n"
|
216 |
-
|
217 |
# Check for over-concentration
|
218 |
for holding in holdings:
|
219 |
allocation = holding.get("allocation", 0)
|
220 |
if allocation > 25:
|
221 |
analysis_text += f"β οΈ **{holding.get('symbol', 'Unknown')}** is over-weighted at {allocation:.1f}% (consider rebalancing)\n"
|
222 |
-
|
223 |
# Sector recommendations
|
224 |
for sector, allocation in sectors.items():
|
225 |
if allocation > 40:
|
226 |
analysis_text += f"β οΈ **{sector}** sector over-weighted at {allocation:.1f}% (consider diversification)\n"
|
227 |
-
|
228 |
# Diversification suggestions
|
229 |
if num_sectors < 5:
|
230 |
analysis_text += "π‘ **Consider adding exposure to more sectors for better diversification**\n"
|
231 |
-
|
232 |
if len(holdings) < 10:
|
233 |
-
analysis_text +=
|
234 |
-
|
|
|
|
|
235 |
return analysis_text
|
236 |
except Exception as e:
|
237 |
return f"Error analyzing portfolio data: {str(e)}"
|
@@ -241,9 +273,9 @@ def analyze_data_with_repl(data_type, data):
|
|
241 |
stock_data = json.loads(data)
|
242 |
symbol = stock_data.get("symbol", "Unknown")
|
243 |
price_str = stock_data.get("current_price", "0")
|
244 |
-
|
245 |
analysis_text = f"π **Comprehensive Stock Analysis: {symbol}**\n\n"
|
246 |
-
|
247 |
# Company Overview
|
248 |
analysis_text += "## π’ **Company Overview**\n"
|
249 |
analysis_text += f"- **Symbol**: {symbol}\n"
|
@@ -251,18 +283,20 @@ def analyze_data_with_repl(data_type, data):
|
|
251 |
analysis_text += f"- **Company**: {stock_data.get('company_name', 'N/A')}\n"
|
252 |
analysis_text += f"- **Sector**: {stock_data.get('sector', 'N/A')}\n"
|
253 |
analysis_text += f"- **Industry**: {stock_data.get('industry', 'N/A')}\n"
|
254 |
-
analysis_text +=
|
255 |
-
|
|
|
|
|
256 |
# Financial Metrics
|
257 |
financials = stock_data.get("financials", {})
|
258 |
if financials:
|
259 |
analysis_text += "## πΉ **Key Financial Metrics**\n"
|
260 |
-
|
261 |
# Valuation metrics
|
262 |
pe_ratio = financials.get("pe_ratio", "N/A")
|
263 |
pb_ratio = financials.get("pb_ratio", "N/A")
|
264 |
ps_ratio = financials.get("ps_ratio", "N/A")
|
265 |
-
|
266 |
analysis_text += f"- **P/E Ratio**: {pe_ratio}"
|
267 |
if pe_ratio != "N/A" and isinstance(pe_ratio, (int, float)):
|
268 |
if pe_ratio < 15:
|
@@ -272,26 +306,28 @@ def analyze_data_with_repl(data_type, data):
|
|
272 |
else:
|
273 |
analysis_text += " π‘ (Fairly Valued)"
|
274 |
analysis_text += "\n"
|
275 |
-
|
276 |
analysis_text += f"- **P/B Ratio**: {pb_ratio}\n"
|
277 |
analysis_text += f"- **P/S Ratio**: {ps_ratio}\n"
|
278 |
-
|
279 |
# Profitability metrics
|
280 |
analysis_text += f"- **ROE**: {financials.get('roe', 'N/A')}\n"
|
281 |
analysis_text += f"- **ROA**: {financials.get('roa', 'N/A')}\n"
|
282 |
-
analysis_text +=
|
|
|
|
|
283 |
analysis_text += f"- **Revenue Growth**: {financials.get('revenue_growth', 'N/A')}\n\n"
|
284 |
-
|
285 |
# Performance analysis with trend indicators
|
286 |
performance = stock_data.get("performance", {})
|
287 |
if performance:
|
288 |
analysis_text += "## π **Performance Analysis**\n"
|
289 |
-
|
290 |
periods = ["1d", "1w", "1m", "3m", "6m", "1y", "ytd"]
|
291 |
for period in periods:
|
292 |
if period in performance:
|
293 |
return_pct = performance[period]
|
294 |
-
|
295 |
# Add trend indicators
|
296 |
if isinstance(return_pct, str) and "%" in return_pct:
|
297 |
try:
|
@@ -306,19 +342,21 @@ def analyze_data_with_repl(data_type, data):
|
|
306 |
trend = ""
|
307 |
else:
|
308 |
trend = ""
|
309 |
-
|
310 |
-
analysis_text +=
|
|
|
|
|
311 |
analysis_text += "\n"
|
312 |
-
|
313 |
# Advanced Risk Assessment
|
314 |
risk_data = stock_data.get("risk_assessment", {})
|
315 |
if risk_data:
|
316 |
analysis_text += "## β οΈ **Risk Assessment**\n"
|
317 |
-
|
318 |
-
risk_level = risk_data.get(
|
319 |
-
volatility = risk_data.get(
|
320 |
-
beta = risk_data.get(
|
321 |
-
|
322 |
# Risk level with emoji indicators
|
323 |
if risk_level.lower() == "low":
|
324 |
risk_emoji = "π’"
|
@@ -328,11 +366,11 @@ def analyze_data_with_repl(data_type, data):
|
|
328 |
risk_emoji = "π΄"
|
329 |
else:
|
330 |
risk_emoji = ""
|
331 |
-
|
332 |
analysis_text += f"- **Risk Level**: {risk_level} {risk_emoji}\n"
|
333 |
analysis_text += f"- **30-Day Volatility**: {volatility}\n"
|
334 |
analysis_text += f"- **Beta**: {beta}"
|
335 |
-
|
336 |
if beta != "N/A" and isinstance(beta, (int, float)):
|
337 |
if beta > 1.2:
|
338 |
analysis_text += " (High volatility vs market)"
|
@@ -341,7 +379,7 @@ def analyze_data_with_repl(data_type, data):
|
|
341 |
else:
|
342 |
analysis_text += " (Similar to market)"
|
343 |
analysis_text += "\n\n"
|
344 |
-
|
345 |
# Technical Analysis
|
346 |
technical = stock_data.get("technical_analysis", {})
|
347 |
if technical:
|
@@ -349,18 +387,22 @@ def analyze_data_with_repl(data_type, data):
|
|
349 |
analysis_text += f"- **50-Day MA**: {technical.get('ma_50', 'N/A')}\n"
|
350 |
analysis_text += f"- **200-Day MA**: {technical.get('ma_200', 'N/A')}\n"
|
351 |
analysis_text += f"- **RSI**: {technical.get('rsi', 'N/A')}\n"
|
352 |
-
analysis_text +=
|
353 |
-
|
354 |
-
|
|
|
|
|
|
|
|
|
355 |
# Investment Recommendation with detailed reasoning
|
356 |
recommendation = stock_data.get("recommendation", {})
|
357 |
if recommendation:
|
358 |
-
action = recommendation.get(
|
359 |
-
confidence = recommendation.get(
|
360 |
-
reasoning = recommendation.get(
|
361 |
-
|
362 |
analysis_text += "## π‘ **Investment Recommendation**\n"
|
363 |
-
|
364 |
# Action with emoji
|
365 |
if action.lower() == "buy":
|
366 |
action_emoji = "π’"
|
@@ -370,38 +412,38 @@ def analyze_data_with_repl(data_type, data):
|
|
370 |
action_emoji = "π‘"
|
371 |
else:
|
372 |
action_emoji = ""
|
373 |
-
|
374 |
analysis_text += f"- **Action**: {action} {action_emoji}\n"
|
375 |
analysis_text += f"- **Confidence**: {confidence}\n"
|
376 |
-
|
377 |
if reasoning:
|
378 |
analysis_text += f"- **Reasoning**: {reasoning}\n"
|
379 |
-
|
380 |
analysis_text += "\n"
|
381 |
-
|
382 |
# Additional Investment Considerations
|
383 |
analysis_text += "## π― **Investment Considerations**\n"
|
384 |
-
|
385 |
# Dividend info
|
386 |
dividend_yield = stock_data.get("dividend_yield", "N/A")
|
387 |
if dividend_yield != "N/A":
|
388 |
analysis_text += f"- **Dividend Yield**: {dividend_yield}\n"
|
389 |
-
|
390 |
# Analyst ratings
|
391 |
analyst_rating = stock_data.get("analyst_rating", "N/A")
|
392 |
if analyst_rating != "N/A":
|
393 |
analysis_text += f"- **Analyst Rating**: {analyst_rating}\n"
|
394 |
-
|
395 |
# Price targets
|
396 |
price_target = stock_data.get("price_target", "N/A")
|
397 |
if price_target != "N/A":
|
398 |
analysis_text += f"- **Price Target**: {price_target}\n"
|
399 |
-
|
400 |
# ESG score
|
401 |
esg_score = stock_data.get("esg_score", "N/A")
|
402 |
if esg_score != "N/A":
|
403 |
analysis_text += f"- **ESG Score**: {esg_score}\n"
|
404 |
-
|
405 |
return analysis_text
|
406 |
except Exception as e:
|
407 |
return f"Error analyzing stock data: {str(e)}"
|
@@ -412,53 +454,115 @@ def analyze_data_with_repl(data_type, data):
|
|
412 |
def determine_intended_tool(message):
|
413 |
"""Determine which tool the AI intends to use based on the message"""
|
414 |
message_lower = message.lower()
|
415 |
-
|
416 |
tool_detection_map = {
|
417 |
-
"budget_planner": [
|
418 |
-
|
419 |
-
|
420 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
}
|
422 |
-
|
423 |
tool_names = {
|
424 |
"budget_planner": "Budget Planner",
|
425 |
"investment_analyzer": "Investment Analyzer",
|
426 |
"market_trends": "Market Trends Analyzer",
|
427 |
"portfolio_analyzer": "Portfolio Analyzer",
|
428 |
}
|
429 |
-
|
430 |
for tool_key, keywords in tool_detection_map.items():
|
431 |
if any(keyword in message_lower for keyword in keywords):
|
432 |
return tool_key, tool_names.get(tool_key, tool_key)
|
433 |
-
|
434 |
return None, None
|
435 |
|
436 |
|
437 |
def determine_response_type(message):
|
438 |
"""Determine if user wants detailed report or short response"""
|
439 |
message_lower = message.lower()
|
440 |
-
|
441 |
# Keywords indicating detailed response preference
|
442 |
detailed_keywords = [
|
443 |
-
"detailed",
|
444 |
-
"
|
445 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
446 |
]
|
447 |
-
|
448 |
-
# Keywords indicating short response preference
|
449 |
short_keywords = [
|
450 |
-
"quick",
|
451 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
]
|
453 |
-
|
454 |
# Check for detailed indicators first
|
455 |
if any(keyword in message_lower for keyword in detailed_keywords):
|
456 |
return "detailed"
|
457 |
-
|
458 |
# Check for short indicators
|
459 |
if any(keyword in message_lower for keyword in short_keywords):
|
460 |
return "short"
|
461 |
-
|
462 |
# Default to short response
|
463 |
return "short"
|
464 |
|
@@ -494,37 +598,46 @@ def process_financial_query(message, history):
|
|
494 |
# Start timer
|
495 |
start_time = time.time()
|
496 |
init_message_start_index = len(history)
|
497 |
-
|
498 |
try:
|
499 |
# Show what tool will be used and processing status
|
500 |
-
intended_tool_key, intended_tool_name = determine_intended_tool(
|
|
|
|
|
501 |
response_type = determine_response_type(last_user_message)
|
502 |
-
|
503 |
# Always show status for all tools with expected time estimates
|
504 |
if intended_tool_name:
|
505 |
if intended_tool_key == "market_trends":
|
506 |
-
status_msg =
|
507 |
elif intended_tool_key == "investment_analyzer":
|
508 |
-
status_msg =
|
509 |
elif intended_tool_key == "budget_planner":
|
510 |
-
status_msg =
|
511 |
elif intended_tool_key == "portfolio_analyzer":
|
512 |
-
status_msg =
|
513 |
else:
|
514 |
-
status_msg =
|
515 |
-
|
|
|
|
|
516 |
history.append(ChatMessage(role="assistant", content=status_msg))
|
517 |
yield history
|
518 |
else:
|
519 |
# If no tool detected, show generic processing message
|
520 |
-
history.append(
|
|
|
|
|
|
|
|
|
|
|
521 |
yield history
|
522 |
-
|
523 |
# Process message through agent
|
524 |
-
response, tool_used, tool_result, all_tools, all_results =
|
525 |
-
last_user_message, agent_history
|
526 |
)
|
527 |
-
|
528 |
# Clear the processing message now that tool is complete
|
529 |
if len(history) > init_message_start_index:
|
530 |
history.pop() # Remove the processing message
|
@@ -532,25 +645,25 @@ def process_financial_query(message, history):
|
|
532 |
if all_tools and all_results:
|
533 |
# Remove initialization messages but keep all previous conversation and tool info
|
534 |
history = history[:init_message_start_index]
|
535 |
-
|
536 |
tool_names = {
|
537 |
"budget_planner": "Budget Planner",
|
538 |
"investment_analyzer": "Investment Analyzer",
|
539 |
"market_trends": "Market Trends Analyzer",
|
540 |
"portfolio_analyzer": "Portfolio Analyzer",
|
541 |
}
|
542 |
-
|
543 |
tool_emojis = {
|
544 |
"Budget Planner": "π°",
|
545 |
"Investment Analyzer": "π",
|
546 |
"Market Trends Analyzer": "π°",
|
547 |
"Portfolio Analyzer": "π",
|
548 |
}
|
549 |
-
|
550 |
# Show results for all tools used
|
551 |
for i, (used_tool, result) in enumerate(zip(all_tools, all_results)):
|
552 |
tool_display_name = tool_names.get(used_tool, used_tool)
|
553 |
-
|
554 |
if result:
|
555 |
# Format tool result for display
|
556 |
try:
|
@@ -578,11 +691,9 @@ def process_financial_query(message, history):
|
|
578 |
else:
|
579 |
# Truncate non-JSON results
|
580 |
display_result = (
|
581 |
-
result[:1000] + "..."
|
582 |
-
if len(result) > 1000
|
583 |
-
else result
|
584 |
)
|
585 |
-
except Exception
|
586 |
display_result = (
|
587 |
str(result)[:1000] + "..."
|
588 |
if len(str(result)) > 1000
|
@@ -590,7 +701,7 @@ def process_financial_query(message, history):
|
|
590 |
)
|
591 |
|
592 |
tool_emoji = tool_emojis.get(tool_display_name, "π§")
|
593 |
-
|
594 |
collapsible_content = f"""
|
595 |
<details>
|
596 |
<summary><strong>{tool_emoji} {tool_display_name} Results</strong> - Click to expand</summary>
|
@@ -599,20 +710,26 @@ def process_financial_query(message, history):
|
|
599 |
|
600 |
</details>
|
601 |
"""
|
602 |
-
|
603 |
-
history.append(
|
604 |
-
|
605 |
-
|
606 |
-
|
|
|
|
|
607 |
yield history
|
608 |
|
609 |
# Add visualization for all applicable tools
|
610 |
if all_tools and all_results:
|
611 |
for used_tool, result in zip(all_tools, all_results):
|
612 |
-
if result and used_tool in [
|
|
|
|
|
|
|
|
|
613 |
viz_type = {
|
614 |
"budget_planner": "budget",
|
615 |
-
"portfolio_analyzer": "portfolio",
|
616 |
"investment_analyzer": "stock",
|
617 |
}.get(used_tool)
|
618 |
|
@@ -625,7 +742,7 @@ def process_financial_query(message, history):
|
|
625 |
"portfolio_analyzer": "Portfolio",
|
626 |
"investment_analyzer": "Stock",
|
627 |
}.get(used_tool, "Data")
|
628 |
-
|
629 |
# Create collapsible data analysis output
|
630 |
collapsible_analysis = f"""
|
631 |
<details>
|
@@ -635,14 +752,16 @@ def process_financial_query(message, history):
|
|
635 |
|
636 |
</details>
|
637 |
"""
|
638 |
-
|
639 |
-
history.append(
|
640 |
-
|
641 |
-
|
642 |
-
|
|
|
|
|
643 |
yield history
|
644 |
|
645 |
-
except Exception
|
646 |
# Silently continue if analysis fails
|
647 |
pass
|
648 |
|
@@ -651,8 +770,10 @@ def process_financial_query(message, history):
|
|
651 |
# Use real LLM streaming with response type
|
652 |
streaming_content = ""
|
653 |
history.append(ChatMessage(role="assistant", content=""))
|
654 |
-
|
655 |
-
for chunk in agent.stream_response(
|
|
|
|
|
656 |
streaming_content += chunk
|
657 |
history[-1] = ChatMessage(role="assistant", content=streaming_content)
|
658 |
yield history
|
@@ -675,10 +796,11 @@ def process_financial_query(message, history):
|
|
675 |
|
676 |
# Create the Gradio interface
|
677 |
with gr.Blocks(theme=gr.themes.Base(), title="Financial Advisory Agent") as demo:
|
678 |
-
gr.HTML("""<
|
|
|
679 |
<h1 style="text-align: center;">AI Financial Advisory Agent</h1>
|
680 |
-
Your AI-powered financial advisor for budgeting, investments, portfolio analysis, and market trends
|
681 |
-
</
|
682 |
""")
|
683 |
|
684 |
chatbot = gr.Chatbot(
|
|
|
37 |
if categories and values:
|
38 |
total_expenses = sum(values)
|
39 |
analysis_text = "π° **Comprehensive Budget Analysis**\n\n"
|
40 |
+
|
41 |
# Income vs Expenses Overview
|
42 |
analysis_text += "## π **Income vs Expenses Overview**\n"
|
43 |
analysis_text += f"- **Monthly Income**: ${income:,.0f}\n"
|
44 |
analysis_text += f"- **Total Expenses**: ${total_expenses:,.0f}\n"
|
45 |
+
|
46 |
if income > 0:
|
47 |
remaining = income - total_expenses
|
48 |
savings_rate = (remaining / income * 100) if income > 0 else 0
|
49 |
+
|
50 |
if remaining > 0:
|
51 |
analysis_text += f"- **π Surplus**: ${remaining:,.0f}\n"
|
52 |
analysis_text += f"- **π Savings Rate**: {savings_rate:.1f}%\n"
|
53 |
else:
|
54 |
analysis_text += f"- **π΄ Deficit**: ${abs(remaining):,.0f}\n"
|
55 |
+
analysis_text += (
|
56 |
+
f"- **β οΈ Overspending**: {abs(savings_rate):.1f}%\n"
|
57 |
+
)
|
58 |
+
|
59 |
# Expense Breakdown with Progress Bars
|
60 |
analysis_text += "\n## π³ **Expense Breakdown**\n"
|
61 |
for i, (category, amount) in enumerate(zip(categories, values)):
|
62 |
+
percentage = (
|
63 |
+
(amount / total_expenses * 100) if total_expenses > 0 else 0
|
64 |
+
)
|
65 |
income_percentage = (amount / income * 100) if income > 0 else 0
|
66 |
bar = "β" * min(int(percentage / 3), 30) # Max 30 chars
|
67 |
+
|
68 |
analysis_text += f"**{category.title()}**: ${amount:,.0f}\n"
|
69 |
analysis_text += f" ββ {percentage:.1f}% of expenses | {income_percentage:.1f}% of income {bar}\n\n"
|
70 |
+
|
71 |
# Financial Health Metrics
|
72 |
analysis_text += "## π **Financial Health Metrics**\n"
|
73 |
avg_expense = total_expenses / len(values)
|
|
|
75 |
smallest_expense = min(values)
|
76 |
largest_category = categories[values.index(largest_expense)]
|
77 |
smallest_category = categories[values.index(smallest_expense)]
|
78 |
+
|
79 |
+
analysis_text += (
|
80 |
+
f"- **Average Category Expense**: ${avg_expense:,.0f}\n"
|
81 |
+
)
|
82 |
analysis_text += f"- **Highest Expense**: {largest_category} (${largest_expense:,.0f})\n"
|
83 |
analysis_text += f"- **Lowest Expense**: {smallest_category} (${smallest_expense:,.0f})\n"
|
84 |
+
analysis_text += (
|
85 |
+
f"- **Expense Range**: ${largest_expense - smallest_expense:,.0f}\n"
|
86 |
+
)
|
87 |
+
|
88 |
# Budget Recommendations
|
89 |
analysis_text += "\n## π‘ **Smart Budget Insights**\n"
|
90 |
+
|
91 |
# 50/30/20 Rule Analysis
|
92 |
if income > 0:
|
93 |
needs_target = income * 0.50
|
94 |
wants_target = income * 0.30
|
95 |
savings_target = income * 0.20
|
96 |
+
|
97 |
+
analysis_text += "**50/30/20 Rule Comparison:**\n"
|
98 |
analysis_text += f"- Needs Target (50%): ${needs_target:,.0f}\n"
|
99 |
analysis_text += f"- Wants Target (30%): ${wants_target:,.0f}\n"
|
100 |
analysis_text += f"- Savings Target (20%): ${savings_target:,.0f}\n"
|
101 |
+
|
102 |
if savings_rate >= 20:
|
103 |
analysis_text += "β
**Excellent savings rate!**\n"
|
104 |
elif savings_rate >= 10:
|
105 |
analysis_text += "β οΈ **Good savings, aim for 20%**\n"
|
106 |
else:
|
107 |
+
analysis_text += (
|
108 |
+
"π΄ **Consider reducing expenses to save more**\n"
|
109 |
+
)
|
110 |
+
|
111 |
# Category Warnings
|
112 |
for category, amount in zip(categories, values):
|
113 |
if income > 0:
|
114 |
+
cat_percentage = amount / income * 100
|
115 |
+
if (
|
116 |
+
category.lower() in ["rent", "housing"]
|
117 |
+
and cat_percentage > 30
|
118 |
+
):
|
119 |
analysis_text += f"β οΈ **Housing costs high**: {cat_percentage:.1f}% (recommend <30%)\n"
|
120 |
+
elif (
|
121 |
+
category.lower() in ["food", "dining"]
|
122 |
+
and cat_percentage > 15
|
123 |
+
):
|
124 |
analysis_text += f"β οΈ **Food costs high**: {cat_percentage:.1f}% (recommend <15%)\n"
|
125 |
+
|
126 |
return analysis_text
|
127 |
except Exception as e:
|
128 |
return f"Error analyzing budget data: {str(e)}"
|
|
|
132 |
portfolio_data = json.loads(data)
|
133 |
holdings = portfolio_data.get("holdings", [])
|
134 |
total_value = sum(holding.get("value", 0) for holding in holdings)
|
135 |
+
|
136 |
analysis_text = "π **Advanced Portfolio Analysis**\n\n"
|
137 |
+
|
138 |
# Portfolio Overview
|
139 |
analysis_text += "## πΌ **Portfolio Overview**\n"
|
140 |
analysis_text += f"- **Total Portfolio Value**: ${total_value:,.2f}\n"
|
141 |
analysis_text += f"- **Number of Holdings**: {len(holdings)}\n"
|
142 |
+
|
143 |
if holdings:
|
144 |
values = [holding.get("value", 0) for holding in holdings]
|
145 |
avg_holding = sum(values) / len(values)
|
146 |
max_holding = max(values)
|
147 |
min_holding = min(values)
|
148 |
+
|
149 |
analysis_text += f"- **Average Holding Size**: ${avg_holding:,.2f}\n"
|
150 |
analysis_text += f"- **Largest Position**: ${max_holding:,.2f}\n"
|
151 |
analysis_text += f"- **Smallest Position**: ${min_holding:,.2f}\n"
|
152 |
+
|
153 |
# Detailed Holdings breakdown
|
154 |
analysis_text += "\n## π **Holdings Breakdown**\n"
|
155 |
+
sorted_holdings = sorted(
|
156 |
+
holdings, key=lambda x: x.get("value", 0), reverse=True
|
157 |
+
)
|
158 |
+
|
159 |
for i, holding in enumerate(sorted_holdings, 1):
|
160 |
symbol = holding.get("symbol", "Unknown")
|
161 |
value = holding.get("value", 0)
|
162 |
shares = holding.get("shares", 0)
|
163 |
+
allocation = holding.get(
|
164 |
+
"allocation", (value / total_value * 100) if total_value > 0 else 0
|
165 |
+
)
|
166 |
sector = holding.get("sector", "Unknown")
|
167 |
+
|
168 |
# Calculate position concentration risk
|
169 |
+
risk_level = (
|
170 |
+
"π’ Low"
|
171 |
+
if allocation < 10
|
172 |
+
else "π‘ Medium"
|
173 |
+
if allocation < 25
|
174 |
+
else "π΄ High"
|
175 |
+
)
|
176 |
+
|
177 |
analysis_text += f"**#{i} {symbol}** - {sector}\n"
|
178 |
analysis_text += f" ββ Value: ${value:,.2f} | Shares: {shares:,.0f} | Weight: {allocation:.1f}%\n"
|
179 |
analysis_text += f" ββ Concentration Risk: {risk_level}\n\n"
|
180 |
+
|
181 |
# Sector analysis with advanced metrics
|
182 |
sectors = {}
|
183 |
sector_values = {}
|
|
|
185 |
sector = holding.get("sector", "Unknown")
|
186 |
allocation = holding.get("allocation", 0)
|
187 |
value = holding.get("value", 0)
|
188 |
+
|
189 |
sectors[sector] = sectors.get(sector, 0) + allocation
|
190 |
sector_values[sector] = sector_values.get(sector, 0) + value
|
191 |
+
|
192 |
if sectors:
|
193 |
analysis_text += "## π **Sector Diversification Analysis**\n"
|
194 |
+
sorted_sectors = sorted(
|
195 |
+
sectors.items(), key=lambda x: x[1], reverse=True
|
196 |
+
)
|
197 |
+
|
198 |
for sector, allocation in sorted_sectors:
|
199 |
bar = "β" * min(int(allocation / 2), 30)
|
200 |
value = sector_values.get(sector, 0)
|
201 |
+
|
202 |
# Sector concentration assessment
|
203 |
if allocation > 40:
|
204 |
risk_emoji = "π΄"
|
|
|
209 |
else:
|
210 |
risk_emoji = "π’"
|
211 |
risk_text = "Well diversified"
|
212 |
+
|
213 |
analysis_text += f"**{sector}**: {allocation:.1f}% (${value:,.2f}) {risk_emoji}\n"
|
214 |
analysis_text += f" ββ {bar} {risk_text}\n\n"
|
215 |
+
|
216 |
# Portfolio Health Metrics
|
217 |
analysis_text += "## π― **Portfolio Health Assessment**\n"
|
218 |
+
|
219 |
# Diversification Score
|
220 |
num_sectors = len(sectors)
|
221 |
if num_sectors >= 8:
|
|
|
224 |
diversification = "π‘ Good"
|
225 |
else:
|
226 |
diversification = "π΄ Poor"
|
227 |
+
|
228 |
analysis_text += f"- **Sector Diversification**: {diversification} ({num_sectors} sectors)\n"
|
229 |
+
|
230 |
# Concentration Risk
|
231 |
if holdings:
|
232 |
+
top_3_allocation = sum(
|
233 |
+
sorted([h.get("allocation", 0) for h in holdings], reverse=True)[:3]
|
234 |
+
)
|
235 |
if top_3_allocation > 60:
|
236 |
concentration_risk = "π΄ High"
|
237 |
elif top_3_allocation > 40:
|
238 |
concentration_risk = "π‘ Medium"
|
239 |
else:
|
240 |
concentration_risk = "π’ Low"
|
241 |
+
|
242 |
analysis_text += f"- **Concentration Risk**: {concentration_risk} (Top 3: {top_3_allocation:.1f}%)\n"
|
243 |
+
|
244 |
# Portfolio Recommendations
|
245 |
analysis_text += "\n## π‘ **Portfolio Optimization Recommendations**\n"
|
246 |
+
|
247 |
# Check for over-concentration
|
248 |
for holding in holdings:
|
249 |
allocation = holding.get("allocation", 0)
|
250 |
if allocation > 25:
|
251 |
analysis_text += f"β οΈ **{holding.get('symbol', 'Unknown')}** is over-weighted at {allocation:.1f}% (consider rebalancing)\n"
|
252 |
+
|
253 |
# Sector recommendations
|
254 |
for sector, allocation in sectors.items():
|
255 |
if allocation > 40:
|
256 |
analysis_text += f"β οΈ **{sector}** sector over-weighted at {allocation:.1f}% (consider diversification)\n"
|
257 |
+
|
258 |
# Diversification suggestions
|
259 |
if num_sectors < 5:
|
260 |
analysis_text += "π‘ **Consider adding exposure to more sectors for better diversification**\n"
|
261 |
+
|
262 |
if len(holdings) < 10:
|
263 |
+
analysis_text += (
|
264 |
+
"π‘ **Consider adding more holdings to reduce single-stock risk**\n"
|
265 |
+
)
|
266 |
+
|
267 |
return analysis_text
|
268 |
except Exception as e:
|
269 |
return f"Error analyzing portfolio data: {str(e)}"
|
|
|
273 |
stock_data = json.loads(data)
|
274 |
symbol = stock_data.get("symbol", "Unknown")
|
275 |
price_str = stock_data.get("current_price", "0")
|
276 |
+
|
277 |
analysis_text = f"π **Comprehensive Stock Analysis: {symbol}**\n\n"
|
278 |
+
|
279 |
# Company Overview
|
280 |
analysis_text += "## π’ **Company Overview**\n"
|
281 |
analysis_text += f"- **Symbol**: {symbol}\n"
|
|
|
283 |
analysis_text += f"- **Company**: {stock_data.get('company_name', 'N/A')}\n"
|
284 |
analysis_text += f"- **Sector**: {stock_data.get('sector', 'N/A')}\n"
|
285 |
analysis_text += f"- **Industry**: {stock_data.get('industry', 'N/A')}\n"
|
286 |
+
analysis_text += (
|
287 |
+
f"- **Market Cap**: {stock_data.get('market_cap', 'N/A')}\n\n"
|
288 |
+
)
|
289 |
+
|
290 |
# Financial Metrics
|
291 |
financials = stock_data.get("financials", {})
|
292 |
if financials:
|
293 |
analysis_text += "## πΉ **Key Financial Metrics**\n"
|
294 |
+
|
295 |
# Valuation metrics
|
296 |
pe_ratio = financials.get("pe_ratio", "N/A")
|
297 |
pb_ratio = financials.get("pb_ratio", "N/A")
|
298 |
ps_ratio = financials.get("ps_ratio", "N/A")
|
299 |
+
|
300 |
analysis_text += f"- **P/E Ratio**: {pe_ratio}"
|
301 |
if pe_ratio != "N/A" and isinstance(pe_ratio, (int, float)):
|
302 |
if pe_ratio < 15:
|
|
|
306 |
else:
|
307 |
analysis_text += " π‘ (Fairly Valued)"
|
308 |
analysis_text += "\n"
|
309 |
+
|
310 |
analysis_text += f"- **P/B Ratio**: {pb_ratio}\n"
|
311 |
analysis_text += f"- **P/S Ratio**: {ps_ratio}\n"
|
312 |
+
|
313 |
# Profitability metrics
|
314 |
analysis_text += f"- **ROE**: {financials.get('roe', 'N/A')}\n"
|
315 |
analysis_text += f"- **ROA**: {financials.get('roa', 'N/A')}\n"
|
316 |
+
analysis_text += (
|
317 |
+
f"- **Profit Margin**: {financials.get('profit_margin', 'N/A')}\n"
|
318 |
+
)
|
319 |
analysis_text += f"- **Revenue Growth**: {financials.get('revenue_growth', 'N/A')}\n\n"
|
320 |
+
|
321 |
# Performance analysis with trend indicators
|
322 |
performance = stock_data.get("performance", {})
|
323 |
if performance:
|
324 |
analysis_text += "## π **Performance Analysis**\n"
|
325 |
+
|
326 |
periods = ["1d", "1w", "1m", "3m", "6m", "1y", "ytd"]
|
327 |
for period in periods:
|
328 |
if period in performance:
|
329 |
return_pct = performance[period]
|
330 |
+
|
331 |
# Add trend indicators
|
332 |
if isinstance(return_pct, str) and "%" in return_pct:
|
333 |
try:
|
|
|
342 |
trend = ""
|
343 |
else:
|
344 |
trend = ""
|
345 |
+
|
346 |
+
analysis_text += (
|
347 |
+
f"- **{period.upper()}**: {return_pct} {trend}\n"
|
348 |
+
)
|
349 |
analysis_text += "\n"
|
350 |
+
|
351 |
# Advanced Risk Assessment
|
352 |
risk_data = stock_data.get("risk_assessment", {})
|
353 |
if risk_data:
|
354 |
analysis_text += "## β οΈ **Risk Assessment**\n"
|
355 |
+
|
356 |
+
risk_level = risk_data.get("risk_level", "N/A")
|
357 |
+
volatility = risk_data.get("volatility_30d", "N/A")
|
358 |
+
beta = risk_data.get("beta", "N/A")
|
359 |
+
|
360 |
# Risk level with emoji indicators
|
361 |
if risk_level.lower() == "low":
|
362 |
risk_emoji = "π’"
|
|
|
366 |
risk_emoji = "π΄"
|
367 |
else:
|
368 |
risk_emoji = ""
|
369 |
+
|
370 |
analysis_text += f"- **Risk Level**: {risk_level} {risk_emoji}\n"
|
371 |
analysis_text += f"- **30-Day Volatility**: {volatility}\n"
|
372 |
analysis_text += f"- **Beta**: {beta}"
|
373 |
+
|
374 |
if beta != "N/A" and isinstance(beta, (int, float)):
|
375 |
if beta > 1.2:
|
376 |
analysis_text += " (High volatility vs market)"
|
|
|
379 |
else:
|
380 |
analysis_text += " (Similar to market)"
|
381 |
analysis_text += "\n\n"
|
382 |
+
|
383 |
# Technical Analysis
|
384 |
technical = stock_data.get("technical_analysis", {})
|
385 |
if technical:
|
|
|
387 |
analysis_text += f"- **50-Day MA**: {technical.get('ma_50', 'N/A')}\n"
|
388 |
analysis_text += f"- **200-Day MA**: {technical.get('ma_200', 'N/A')}\n"
|
389 |
analysis_text += f"- **RSI**: {technical.get('rsi', 'N/A')}\n"
|
390 |
+
analysis_text += (
|
391 |
+
f"- **Support Level**: {technical.get('support', 'N/A')}\n"
|
392 |
+
)
|
393 |
+
analysis_text += (
|
394 |
+
f"- **Resistance Level**: {technical.get('resistance', 'N/A')}\n\n"
|
395 |
+
)
|
396 |
+
|
397 |
# Investment Recommendation with detailed reasoning
|
398 |
recommendation = stock_data.get("recommendation", {})
|
399 |
if recommendation:
|
400 |
+
action = recommendation.get("action", "N/A")
|
401 |
+
confidence = recommendation.get("confidence", "N/A")
|
402 |
+
reasoning = recommendation.get("reasoning", "")
|
403 |
+
|
404 |
analysis_text += "## π‘ **Investment Recommendation**\n"
|
405 |
+
|
406 |
# Action with emoji
|
407 |
if action.lower() == "buy":
|
408 |
action_emoji = "π’"
|
|
|
412 |
action_emoji = "π‘"
|
413 |
else:
|
414 |
action_emoji = ""
|
415 |
+
|
416 |
analysis_text += f"- **Action**: {action} {action_emoji}\n"
|
417 |
analysis_text += f"- **Confidence**: {confidence}\n"
|
418 |
+
|
419 |
if reasoning:
|
420 |
analysis_text += f"- **Reasoning**: {reasoning}\n"
|
421 |
+
|
422 |
analysis_text += "\n"
|
423 |
+
|
424 |
# Additional Investment Considerations
|
425 |
analysis_text += "## π― **Investment Considerations**\n"
|
426 |
+
|
427 |
# Dividend info
|
428 |
dividend_yield = stock_data.get("dividend_yield", "N/A")
|
429 |
if dividend_yield != "N/A":
|
430 |
analysis_text += f"- **Dividend Yield**: {dividend_yield}\n"
|
431 |
+
|
432 |
# Analyst ratings
|
433 |
analyst_rating = stock_data.get("analyst_rating", "N/A")
|
434 |
if analyst_rating != "N/A":
|
435 |
analysis_text += f"- **Analyst Rating**: {analyst_rating}\n"
|
436 |
+
|
437 |
# Price targets
|
438 |
price_target = stock_data.get("price_target", "N/A")
|
439 |
if price_target != "N/A":
|
440 |
analysis_text += f"- **Price Target**: {price_target}\n"
|
441 |
+
|
442 |
# ESG score
|
443 |
esg_score = stock_data.get("esg_score", "N/A")
|
444 |
if esg_score != "N/A":
|
445 |
analysis_text += f"- **ESG Score**: {esg_score}\n"
|
446 |
+
|
447 |
return analysis_text
|
448 |
except Exception as e:
|
449 |
return f"Error analyzing stock data: {str(e)}"
|
|
|
454 |
def determine_intended_tool(message):
|
455 |
"""Determine which tool the AI intends to use based on the message"""
|
456 |
message_lower = message.lower()
|
457 |
+
|
458 |
tool_detection_map = {
|
459 |
+
"budget_planner": [
|
460 |
+
"budget",
|
461 |
+
"income",
|
462 |
+
"expense",
|
463 |
+
"spending",
|
464 |
+
"allocat",
|
465 |
+
"monthly",
|
466 |
+
"plan",
|
467 |
+
"financial plan",
|
468 |
+
"money",
|
469 |
+
"track",
|
470 |
+
"categoriz",
|
471 |
+
"cost",
|
472 |
+
],
|
473 |
+
"investment_analyzer": [
|
474 |
+
"stock",
|
475 |
+
"invest",
|
476 |
+
"buy",
|
477 |
+
"sell",
|
478 |
+
"analyze",
|
479 |
+
"AAPL",
|
480 |
+
"GOOGL",
|
481 |
+
"TSLA",
|
482 |
+
"share",
|
483 |
+
"equity",
|
484 |
+
],
|
485 |
+
"portfolio_analyzer": [
|
486 |
+
"portfolio",
|
487 |
+
"holdings",
|
488 |
+
"allocation",
|
489 |
+
"diversif",
|
490 |
+
"asset",
|
491 |
+
"position",
|
492 |
+
],
|
493 |
+
"market_trends": [
|
494 |
+
"market",
|
495 |
+
"trend",
|
496 |
+
"news",
|
497 |
+
"sector",
|
498 |
+
"economic",
|
499 |
+
"latest",
|
500 |
+
"current",
|
501 |
+
],
|
502 |
}
|
503 |
+
|
504 |
tool_names = {
|
505 |
"budget_planner": "Budget Planner",
|
506 |
"investment_analyzer": "Investment Analyzer",
|
507 |
"market_trends": "Market Trends Analyzer",
|
508 |
"portfolio_analyzer": "Portfolio Analyzer",
|
509 |
}
|
510 |
+
|
511 |
for tool_key, keywords in tool_detection_map.items():
|
512 |
if any(keyword in message_lower for keyword in keywords):
|
513 |
return tool_key, tool_names.get(tool_key, tool_key)
|
514 |
+
|
515 |
return None, None
|
516 |
|
517 |
|
518 |
def determine_response_type(message):
|
519 |
"""Determine if user wants detailed report or short response"""
|
520 |
message_lower = message.lower()
|
521 |
+
|
522 |
# Keywords indicating detailed response preference
|
523 |
detailed_keywords = [
|
524 |
+
"detailed",
|
525 |
+
"detail",
|
526 |
+
"comprehensive",
|
527 |
+
"thorough",
|
528 |
+
"in-depth",
|
529 |
+
"full analysis",
|
530 |
+
"complete",
|
531 |
+
"report",
|
532 |
+
"breakdown",
|
533 |
+
"explain",
|
534 |
+
"elaborate",
|
535 |
+
"deep dive",
|
536 |
+
"extensive",
|
537 |
+
"detailed analysis",
|
538 |
+
"full report",
|
539 |
+
"comprehensive report",
|
540 |
]
|
541 |
+
|
542 |
+
# Keywords indicating short response preference
|
543 |
short_keywords = [
|
544 |
+
"quick",
|
545 |
+
"brief",
|
546 |
+
"short",
|
547 |
+
"summary",
|
548 |
+
"concise",
|
549 |
+
"simple",
|
550 |
+
"fast",
|
551 |
+
"just tell me",
|
552 |
+
"quickly",
|
553 |
+
"in short",
|
554 |
+
"tldr",
|
555 |
+
"bottom line",
|
556 |
]
|
557 |
+
|
558 |
# Check for detailed indicators first
|
559 |
if any(keyword in message_lower for keyword in detailed_keywords):
|
560 |
return "detailed"
|
561 |
+
|
562 |
# Check for short indicators
|
563 |
if any(keyword in message_lower for keyword in short_keywords):
|
564 |
return "short"
|
565 |
+
|
566 |
# Default to short response
|
567 |
return "short"
|
568 |
|
|
|
598 |
# Start timer
|
599 |
start_time = time.time()
|
600 |
init_message_start_index = len(history)
|
601 |
+
|
602 |
try:
|
603 |
# Show what tool will be used and processing status
|
604 |
+
intended_tool_key, intended_tool_name = determine_intended_tool(
|
605 |
+
last_user_message
|
606 |
+
)
|
607 |
response_type = determine_response_type(last_user_message)
|
608 |
+
|
609 |
# Always show status for all tools with expected time estimates
|
610 |
if intended_tool_name:
|
611 |
if intended_tool_key == "market_trends":
|
612 |
+
status_msg = "π Fetching market news & analyzing trends (estimated 20-30 seconds)..."
|
613 |
elif intended_tool_key == "investment_analyzer":
|
614 |
+
status_msg = "π Analyzing stock data & calculating metrics (estimated 10-15 seconds)..."
|
615 |
elif intended_tool_key == "budget_planner":
|
616 |
+
status_msg = "π° Processing budget analysis (estimated 5-10 seconds)..."
|
617 |
elif intended_tool_key == "portfolio_analyzer":
|
618 |
+
status_msg = "π Analyzing portfolio data (estimated 8-12 seconds)..."
|
619 |
else:
|
620 |
+
status_msg = (
|
621 |
+
f"π Using {intended_tool_name} (estimated 5-15 seconds)..."
|
622 |
+
)
|
623 |
+
|
624 |
history.append(ChatMessage(role="assistant", content=status_msg))
|
625 |
yield history
|
626 |
else:
|
627 |
# If no tool detected, show generic processing message
|
628 |
+
history.append(
|
629 |
+
ChatMessage(
|
630 |
+
role="assistant",
|
631 |
+
content="π§ Processing your request (estimated 10-15 seconds)...",
|
632 |
+
)
|
633 |
+
)
|
634 |
yield history
|
635 |
+
|
636 |
# Process message through agent
|
637 |
+
response, tool_used, tool_result, all_tools, all_results = (
|
638 |
+
agent.process_message_with_details(last_user_message, agent_history)
|
639 |
)
|
640 |
+
|
641 |
# Clear the processing message now that tool is complete
|
642 |
if len(history) > init_message_start_index:
|
643 |
history.pop() # Remove the processing message
|
|
|
645 |
if all_tools and all_results:
|
646 |
# Remove initialization messages but keep all previous conversation and tool info
|
647 |
history = history[:init_message_start_index]
|
648 |
+
|
649 |
tool_names = {
|
650 |
"budget_planner": "Budget Planner",
|
651 |
"investment_analyzer": "Investment Analyzer",
|
652 |
"market_trends": "Market Trends Analyzer",
|
653 |
"portfolio_analyzer": "Portfolio Analyzer",
|
654 |
}
|
655 |
+
|
656 |
tool_emojis = {
|
657 |
"Budget Planner": "π°",
|
658 |
"Investment Analyzer": "π",
|
659 |
"Market Trends Analyzer": "π°",
|
660 |
"Portfolio Analyzer": "π",
|
661 |
}
|
662 |
+
|
663 |
# Show results for all tools used
|
664 |
for i, (used_tool, result) in enumerate(zip(all_tools, all_results)):
|
665 |
tool_display_name = tool_names.get(used_tool, used_tool)
|
666 |
+
|
667 |
if result:
|
668 |
# Format tool result for display
|
669 |
try:
|
|
|
691 |
else:
|
692 |
# Truncate non-JSON results
|
693 |
display_result = (
|
694 |
+
result[:1000] + "..." if len(result) > 1000 else result
|
|
|
|
|
695 |
)
|
696 |
+
except Exception:
|
697 |
display_result = (
|
698 |
str(result)[:1000] + "..."
|
699 |
if len(str(result)) > 1000
|
|
|
701 |
)
|
702 |
|
703 |
tool_emoji = tool_emojis.get(tool_display_name, "π§")
|
704 |
+
|
705 |
collapsible_content = f"""
|
706 |
<details>
|
707 |
<summary><strong>{tool_emoji} {tool_display_name} Results</strong> - Click to expand</summary>
|
|
|
710 |
|
711 |
</details>
|
712 |
"""
|
713 |
+
|
714 |
+
history.append(
|
715 |
+
ChatMessage(
|
716 |
+
role="assistant",
|
717 |
+
content=collapsible_content,
|
718 |
+
)
|
719 |
+
)
|
720 |
yield history
|
721 |
|
722 |
# Add visualization for all applicable tools
|
723 |
if all_tools and all_results:
|
724 |
for used_tool, result in zip(all_tools, all_results):
|
725 |
+
if result and used_tool in [
|
726 |
+
"budget_planner",
|
727 |
+
"portfolio_analyzer",
|
728 |
+
"investment_analyzer",
|
729 |
+
]:
|
730 |
viz_type = {
|
731 |
"budget_planner": "budget",
|
732 |
+
"portfolio_analyzer": "portfolio",
|
733 |
"investment_analyzer": "stock",
|
734 |
}.get(used_tool)
|
735 |
|
|
|
742 |
"portfolio_analyzer": "Portfolio",
|
743 |
"investment_analyzer": "Stock",
|
744 |
}.get(used_tool, "Data")
|
745 |
+
|
746 |
# Create collapsible data analysis output
|
747 |
collapsible_analysis = f"""
|
748 |
<details>
|
|
|
752 |
|
753 |
</details>
|
754 |
"""
|
755 |
+
|
756 |
+
history.append(
|
757 |
+
ChatMessage(
|
758 |
+
role="assistant",
|
759 |
+
content=collapsible_analysis,
|
760 |
+
)
|
761 |
+
)
|
762 |
yield history
|
763 |
|
764 |
+
except Exception:
|
765 |
# Silently continue if analysis fails
|
766 |
pass
|
767 |
|
|
|
770 |
# Use real LLM streaming with response type
|
771 |
streaming_content = ""
|
772 |
history.append(ChatMessage(role="assistant", content=""))
|
773 |
+
|
774 |
+
for chunk in agent.stream_response(
|
775 |
+
last_user_message, tool_result, tool_used, response_type
|
776 |
+
):
|
777 |
streaming_content += chunk
|
778 |
history[-1] = ChatMessage(role="assistant", content=streaming_content)
|
779 |
yield history
|
|
|
796 |
|
797 |
# Create the Gradio interface
|
798 |
with gr.Blocks(theme=gr.themes.Base(), title="Financial Advisory Agent") as demo:
|
799 |
+
gr.HTML("""<div style="text-align: center;">
|
800 |
+
<img src="/gradio_api/file=public/images/fin_logo.png" alt="Fin Logo" style="width: 50px; vertical-align: middle;">
|
801 |
<h1 style="text-align: center;">AI Financial Advisory Agent</h1>
|
802 |
+
<p>Your AI-powered financial advisor for budgeting, investments, portfolio analysis, and market trends.</p>
|
803 |
+
</div>
|
804 |
""")
|
805 |
|
806 |
chatbot = gr.Chatbot(
|