Spaces:
Configuration error
Configuration error
Kian Kyars
commited on
Commit
·
887133f
1
Parent(s):
b0866e4
Remove comments and clean up chat-with-pdf app
Browse files
app.py
CHANGED
|
@@ -1,94 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import modal
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import os
|
| 4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
-
|
| 6 |
-
image = modal.Image.debian_slim().pip_install(
|
| 7 |
-
"torch",
|
| 8 |
-
"transformers",
|
| 9 |
-
"accelerate",
|
| 10 |
-
"gradio"
|
| 11 |
-
)
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
"
|
| 21 |
-
"
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
return {"error": "Please select three different models."}
|
| 30 |
-
# Agent A
|
| 31 |
-
tokenizer_a = AutoTokenizer.from_pretrained(agent_a_model)
|
| 32 |
-
model_a = AutoModelForCausalLM.from_pretrained(
|
| 33 |
-
agent_a_model,
|
| 34 |
-
load_in_4bit=True,
|
| 35 |
-
device_map="auto"
|
| 36 |
-
)
|
| 37 |
-
prompt_a = f"Debate as Agent A: {topic}"
|
| 38 |
-
inputs_a = tokenizer_a(prompt_a, return_tensors="pt").to(model_a.device)
|
| 39 |
-
outputs_a = model_a.generate(**inputs_a, max_new_tokens=10000)
|
| 40 |
-
arg_a = tokenizer_a.decode(outputs_a[0], skip_special_tokens=True)
|
| 41 |
-
# Agent B
|
| 42 |
-
tokenizer_b = AutoTokenizer.from_pretrained(agent_b_model)
|
| 43 |
-
model_b = AutoModelForCausalLM.from_pretrained(
|
| 44 |
-
agent_b_model,
|
| 45 |
-
load_in_4bit=True,
|
| 46 |
-
device_map="auto"
|
| 47 |
-
)
|
| 48 |
-
prompt_b = f"Debate as Agent B: {topic}"
|
| 49 |
-
inputs_b = tokenizer_b(prompt_b, return_tensors="pt").to(model_b.device)
|
| 50 |
-
outputs_b = model_b.generate(**inputs_b, max_new_tokens=10000)
|
| 51 |
-
arg_b = tokenizer_b.decode(outputs_b[0], skip_special_tokens=True)
|
| 52 |
-
# Judge
|
| 53 |
-
judge_prompt = (
|
| 54 |
-
f"You are the judge of a debate.\n"
|
| 55 |
-
f"Topic: {topic}\n"
|
| 56 |
-
f"Agent A says: {arg_a}\n"
|
| 57 |
-
f"Agent B says: {arg_b}\n"
|
| 58 |
-
f"Summarize both arguments and pick a winner (A or B) with a short justification."
|
| 59 |
)
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
)
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
@modal.asgi_app()
|
| 77 |
-
def
|
|
|
|
|
|
|
| 78 |
import gradio as gr
|
| 79 |
from fastapi import FastAPI
|
| 80 |
from gradio.routes import mount_gradio_app
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
],
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
from urllib.request import urlopen
|
| 3 |
+
from uuid import uuid4
|
| 4 |
+
|
| 5 |
import modal
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
MINUTES = 60
|
| 8 |
+
|
| 9 |
+
app = modal.App("chat-with-pdf")
|
| 10 |
+
|
| 11 |
+
CACHE_DIR = "/hf-cache"
|
| 12 |
+
|
| 13 |
+
model_image = (
|
| 14 |
+
modal.Image.debian_slim(python_version="3.12")
|
| 15 |
+
.apt_install("git")
|
| 16 |
+
.pip_install(
|
| 17 |
+
[
|
| 18 |
+
"git+https://github.com/illuin-tech/colpali.git@782edcd50108d1842d154730ad3ce72476a2d17d",
|
| 19 |
+
"hf_transfer==0.1.8",
|
| 20 |
+
"qwen-vl-utils==0.0.8",
|
| 21 |
+
"torchvision==0.19.1",
|
| 22 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
)
|
| 24 |
+
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HUB_CACHE": CACHE_DIR})
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
with model_image.imports():
|
| 28 |
+
import torch
|
| 29 |
+
from colpali_engine.models import ColQwen2, ColQwen2Processor
|
| 30 |
+
from qwen_vl_utils import process_vision_info
|
| 31 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
| 32 |
+
|
| 33 |
+
MODEL_NAME = "Qwen/Qwen2-VL-2B-Instruct"
|
| 34 |
+
MODEL_REVISION = "aca78372505e6cb469c4fa6a35c60265b00ff5a4"
|
| 35 |
+
|
| 36 |
+
sessions = modal.Dict.from_name("colqwen-chat-sessions", create_if_missing=True)
|
| 37 |
+
|
| 38 |
+
class Session:
|
| 39 |
+
def __init__(self):
|
| 40 |
+
self.images = None
|
| 41 |
+
self.messages = []
|
| 42 |
+
self.pdf_embeddings = None
|
| 43 |
+
|
| 44 |
+
pdf_volume = modal.Volume.from_name("colqwen-chat-pdfs", create_if_missing=True)
|
| 45 |
+
PDF_ROOT = Path("/vol/pdfs/")
|
| 46 |
+
|
| 47 |
+
cache_volume = modal.Volume.from_name("hf-hub-cache", create_if_missing=True)
|
| 48 |
+
|
| 49 |
+
@app.function(
|
| 50 |
+
image=model_image, volumes={CACHE_DIR: cache_volume}, timeout=20 * MINUTES
|
| 51 |
+
)
|
| 52 |
+
def download_model():
|
| 53 |
+
from huggingface_hub import snapshot_download
|
| 54 |
+
|
| 55 |
+
result = snapshot_download(
|
| 56 |
+
MODEL_NAME,
|
| 57 |
+
revision=MODEL_REVISION,
|
| 58 |
+
ignore_patterns=["*.pt", "*.bin"],
|
| 59 |
)
|
| 60 |
+
print(f"Downloaded model weights to {result}")
|
| 61 |
+
|
| 62 |
+
@app.cls(
|
| 63 |
+
image=model_image,
|
| 64 |
+
gpu="A100-80GB",
|
| 65 |
+
scaledown_window=10 * MINUTES,
|
| 66 |
+
volumes={"/vol/pdfs/": pdf_volume, CACHE_DIR: cache_volume},
|
| 67 |
+
)
|
| 68 |
+
class Model:
|
| 69 |
+
@modal.enter()
|
| 70 |
+
def load_models(self):
|
| 71 |
+
self.colqwen2_model = ColQwen2.from_pretrained(
|
| 72 |
+
"vidore/colqwen2-v0.1",
|
| 73 |
+
torch_dtype=torch.bfloat16,
|
| 74 |
+
device_map="cuda:0",
|
| 75 |
+
)
|
| 76 |
+
self.colqwen2_processor = ColQwen2Processor.from_pretrained(
|
| 77 |
+
"vidore/colqwen2-v0.1"
|
| 78 |
+
)
|
| 79 |
+
self.qwen2_vl_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 80 |
+
MODEL_NAME,
|
| 81 |
+
revision=MODEL_REVISION,
|
| 82 |
+
torch_dtype=torch.bfloat16,
|
| 83 |
+
)
|
| 84 |
+
self.qwen2_vl_model.to("cuda:0")
|
| 85 |
+
self.qwen2_vl_processor = AutoProcessor.from_pretrained(
|
| 86 |
+
"Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
@modal.method()
|
| 90 |
+
def index_pdf(self, session_id, target: bytes | list):
|
| 91 |
+
session = sessions.get(session_id)
|
| 92 |
+
if session is None:
|
| 93 |
+
session = Session()
|
| 94 |
+
|
| 95 |
+
if isinstance(target, bytes):
|
| 96 |
+
images = convert_pdf_to_images.remote(target)
|
| 97 |
+
else:
|
| 98 |
+
images = target
|
| 99 |
+
|
| 100 |
+
session_dir = PDF_ROOT / f"{session_id}"
|
| 101 |
+
session_dir.mkdir(exist_ok=True, parents=True)
|
| 102 |
+
for ii, image in enumerate(images):
|
| 103 |
+
filename = session_dir / f"{str(ii).zfill(3)}.jpg"
|
| 104 |
+
image.save(filename)
|
| 105 |
+
|
| 106 |
+
BATCH_SZ = 4
|
| 107 |
+
pdf_embeddings = []
|
| 108 |
+
batches = [images[i : i + BATCH_SZ] for i in range(0, len(images), BATCH_SZ)]
|
| 109 |
+
for batch in batches:
|
| 110 |
+
batch_images = self.colqwen2_processor.process_images(batch).to(
|
| 111 |
+
self.colqwen2_model.device
|
| 112 |
+
)
|
| 113 |
+
pdf_embeddings += list(self.colqwen2_model(**batch_images).to("cpu"))
|
| 114 |
+
|
| 115 |
+
session.pdf_embeddings = pdf_embeddings
|
| 116 |
+
sessions[session_id] = session
|
| 117 |
+
|
| 118 |
+
@modal.method()
|
| 119 |
+
def respond_to_message(self, session_id, message):
|
| 120 |
+
session = sessions.get(session_id)
|
| 121 |
+
if session is None:
|
| 122 |
+
session = Session()
|
| 123 |
+
|
| 124 |
+
pdf_volume.reload()
|
| 125 |
+
|
| 126 |
+
images = (PDF_ROOT / str(session_id)).glob("*.jpg")
|
| 127 |
+
images = list(sorted(images, key=lambda p: int(p.stem)))
|
| 128 |
+
|
| 129 |
+
if not images:
|
| 130 |
+
return "Please upload a PDF first"
|
| 131 |
+
elif session.pdf_embeddings is None:
|
| 132 |
+
return "Indexing PDF..."
|
| 133 |
+
|
| 134 |
+
relevant_image = self.get_relevant_image(message, session, images)
|
| 135 |
+
output_text = self.generate_response(message, session, relevant_image)
|
| 136 |
+
|
| 137 |
+
append_to_messages(message, session, user_type="user")
|
| 138 |
+
append_to_messages(output_text, session, user_type="assistant")
|
| 139 |
+
sessions[session_id] = session
|
| 140 |
+
|
| 141 |
+
return output_text
|
| 142 |
|
| 143 |
+
def get_relevant_image(self, message, session, images):
|
| 144 |
+
import PIL
|
| 145 |
+
|
| 146 |
+
batch_queries = self.colqwen2_processor.process_queries([message]).to(
|
| 147 |
+
self.colqwen2_model.device
|
| 148 |
+
)
|
| 149 |
+
query_embeddings = self.colqwen2_model(**batch_queries)
|
| 150 |
+
|
| 151 |
+
scores = self.colqwen2_processor.score_multi_vector(
|
| 152 |
+
query_embeddings, session.pdf_embeddings
|
| 153 |
+
)[0]
|
| 154 |
+
|
| 155 |
+
max_index = max(range(len(scores)), key=lambda index: scores[index])
|
| 156 |
+
return PIL.Image.open(images[max_index])
|
| 157 |
+
|
| 158 |
+
def generate_response(self, message, session, image):
|
| 159 |
+
chatbot_message = get_chatbot_message_with_image(message, image)
|
| 160 |
+
query = self.qwen2_vl_processor.apply_chat_template(
|
| 161 |
+
[*session.messages, chatbot_message],
|
| 162 |
+
tokenize=False,
|
| 163 |
+
add_generation_prompt=True,
|
| 164 |
+
)
|
| 165 |
+
image_inputs, _ = process_vision_info([chatbot_message])
|
| 166 |
+
inputs = self.qwen2_vl_processor(
|
| 167 |
+
text=[query],
|
| 168 |
+
images=image_inputs,
|
| 169 |
+
padding=True,
|
| 170 |
+
return_tensors="pt",
|
| 171 |
+
)
|
| 172 |
+
inputs = inputs.to("cuda:0")
|
| 173 |
+
|
| 174 |
+
generated_ids = self.qwen2_vl_model.generate(**inputs, max_new_tokens=512)
|
| 175 |
+
generated_ids_trimmed = [
|
| 176 |
+
out_ids[len(in_ids) :]
|
| 177 |
+
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 178 |
+
]
|
| 179 |
+
output_text = self.qwen2_vl_processor.batch_decode(
|
| 180 |
+
generated_ids_trimmed,
|
| 181 |
+
skip_special_tokens=True,
|
| 182 |
+
clean_up_tokenization_spaces=False,
|
| 183 |
+
)[0]
|
| 184 |
+
return output_text
|
| 185 |
+
|
| 186 |
+
pdf_image = (
|
| 187 |
+
modal.Image.debian_slim(python_version="3.12")
|
| 188 |
+
.apt_install("poppler-utils")
|
| 189 |
+
.pip_install("pdf2image==1.17.0", "pillow==10.4.0")
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
@app.function(image=pdf_image)
|
| 193 |
+
def convert_pdf_to_images(pdf_bytes):
|
| 194 |
+
from pdf2image import convert_from_bytes
|
| 195 |
+
|
| 196 |
+
images = convert_from_bytes(pdf_bytes, fmt="jpeg")
|
| 197 |
+
return images
|
| 198 |
+
|
| 199 |
+
@app.local_entrypoint()
|
| 200 |
+
def main(question: str = None, pdf_path: str = None, session_id: str = None):
|
| 201 |
+
model = Model()
|
| 202 |
+
if session_id is None:
|
| 203 |
+
session_id = str(uuid4())
|
| 204 |
+
print("Starting a new session with id", session_id)
|
| 205 |
+
|
| 206 |
+
if pdf_path is None:
|
| 207 |
+
pdf_path = "https://arxiv.org/pdf/1706.03762"
|
| 208 |
+
|
| 209 |
+
if pdf_path.startswith("http"):
|
| 210 |
+
pdf_bytes = urlopen(pdf_path).read()
|
| 211 |
+
else:
|
| 212 |
+
pdf_path = Path(pdf_path)
|
| 213 |
+
pdf_bytes = pdf_path.read_bytes()
|
| 214 |
+
|
| 215 |
+
print("Indexing PDF from", pdf_path)
|
| 216 |
+
model.index_pdf.remote(session_id, pdf_bytes)
|
| 217 |
+
else:
|
| 218 |
+
if pdf_path is not None:
|
| 219 |
+
raise ValueError("Start a new session to chat with a new PDF")
|
| 220 |
+
print("Resuming session with id", session_id)
|
| 221 |
+
|
| 222 |
+
if question is None:
|
| 223 |
+
question = "What is this document about?"
|
| 224 |
+
|
| 225 |
+
print("QUESTION:", question)
|
| 226 |
+
print(model.respond_to_message.remote(session_id, question))
|
| 227 |
+
|
| 228 |
+
web_image = pdf_image.pip_install(
|
| 229 |
+
"fastapi[standard]==0.115.4",
|
| 230 |
+
"pydantic==2.9.2",
|
| 231 |
+
"starlette==0.41.2",
|
| 232 |
+
"gradio==4.44.1",
|
| 233 |
+
"pillow==10.4.0",
|
| 234 |
+
"gradio-pdf==0.0.15",
|
| 235 |
+
"pdf2image==1.17.0",
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
@app.function(
|
| 239 |
+
image=web_image,
|
| 240 |
+
max_containers=1,
|
| 241 |
+
)
|
| 242 |
+
@modal.concurrent(max_inputs=1000)
|
| 243 |
@modal.asgi_app()
|
| 244 |
+
def ui():
|
| 245 |
+
import uuid
|
| 246 |
+
|
| 247 |
import gradio as gr
|
| 248 |
from fastapi import FastAPI
|
| 249 |
from gradio.routes import mount_gradio_app
|
| 250 |
+
from gradio_pdf import PDF
|
| 251 |
+
from pdf2image import convert_from_path
|
| 252 |
+
|
| 253 |
+
web_app = FastAPI()
|
| 254 |
+
model = Model()
|
| 255 |
+
|
| 256 |
+
def upload_pdf(path, session_id):
|
| 257 |
+
if session_id == "" or session_id is None:
|
| 258 |
+
session_id = str(uuid.uuid4())
|
| 259 |
+
|
| 260 |
+
images = convert_from_path(path)
|
| 261 |
+
model.index_pdf.remote(session_id, images)
|
| 262 |
+
|
| 263 |
+
return session_id
|
| 264 |
|
| 265 |
+
def respond_to_message(message, _, session_id):
|
| 266 |
+
return model.respond_to_message.remote(session_id, message)
|
| 267 |
+
|
| 268 |
+
with gr.Blocks(theme="soft") as demo:
|
| 269 |
+
session_id = gr.State("")
|
| 270 |
+
|
| 271 |
+
gr.Markdown("# Chat with PDF")
|
| 272 |
+
with gr.Row():
|
| 273 |
+
with gr.Column(scale=1):
|
| 274 |
+
gr.ChatInterface(
|
| 275 |
+
fn=respond_to_message,
|
| 276 |
+
additional_inputs=[session_id],
|
| 277 |
+
retry_btn=None,
|
| 278 |
+
undo_btn=None,
|
| 279 |
+
clear_btn=None,
|
| 280 |
+
)
|
| 281 |
+
with gr.Column(scale=1):
|
| 282 |
+
pdf = PDF(
|
| 283 |
+
label="Upload a PDF",
|
| 284 |
+
)
|
| 285 |
+
pdf.upload(upload_pdf, [pdf, session_id], session_id)
|
| 286 |
+
|
| 287 |
+
return mount_gradio_app(app=web_app, blocks=demo, path="/")
|
| 288 |
+
|
| 289 |
+
def get_chatbot_message_with_image(message, image):
|
| 290 |
+
return {
|
| 291 |
+
"role": "user",
|
| 292 |
+
"content": [
|
| 293 |
+
{"type": "image", "image": image},
|
| 294 |
+
{"type": "text", "text": message},
|
| 295 |
],
|
| 296 |
+
}
|
| 297 |
+
|
| 298 |
+
def append_to_messages(message, session, user_type="user"):
|
| 299 |
+
session.messages.append(
|
| 300 |
+
{
|
| 301 |
+
"role": user_type,
|
| 302 |
+
"content": {"type": "text", "text": message},
|
| 303 |
+
},
|
| 304 |
+
)
|