Spaces:
Configuration error
Configuration error
Kian Kyars
commited on
Commit
·
b0866e4
1
Parent(s):
859d9d2
Add all popular open-source models to ALL_MODELS for Spaces
Browse files
app.py
CHANGED
|
@@ -10,41 +10,44 @@ image = modal.Image.debian_slim().pip_install(
|
|
| 10 |
"gradio"
|
| 11 |
)
|
| 12 |
|
| 13 |
-
app = modal.App("agentic-demo")
|
| 14 |
|
| 15 |
ALL_MODELS = [
|
| 16 |
-
"meta-llama/Llama-2-70b-hf",
|
| 17 |
-
"mistralai/Mixtral-8x7B-v0.1",
|
| 18 |
"Qwen/Qwen-72B",
|
| 19 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
]
|
| 21 |
|
| 22 |
def debate_agent(topic, agent_a_model, agent_b_model, judge_model):
|
| 23 |
if len({agent_a_model, agent_b_model, judge_model}) < 3:
|
| 24 |
return {"error": "Please select three different models."}
|
| 25 |
# Agent A
|
| 26 |
-
tokenizer_a = AutoTokenizer.from_pretrained(agent_a_model
|
| 27 |
model_a = AutoModelForCausalLM.from_pretrained(
|
| 28 |
agent_a_model,
|
| 29 |
-
token=os.environ["HUGGINGFACE_API_KEY"],
|
| 30 |
load_in_4bit=True,
|
| 31 |
device_map="auto"
|
| 32 |
)
|
| 33 |
prompt_a = f"Debate as Agent A: {topic}"
|
| 34 |
inputs_a = tokenizer_a(prompt_a, return_tensors="pt").to(model_a.device)
|
| 35 |
-
outputs_a = model_a.generate(**inputs_a, max_new_tokens=
|
| 36 |
arg_a = tokenizer_a.decode(outputs_a[0], skip_special_tokens=True)
|
| 37 |
# Agent B
|
| 38 |
-
tokenizer_b = AutoTokenizer.from_pretrained(agent_b_model
|
| 39 |
model_b = AutoModelForCausalLM.from_pretrained(
|
| 40 |
agent_b_model,
|
| 41 |
-
token=os.environ["HUGGINGFACE_API_KEY"],
|
| 42 |
load_in_4bit=True,
|
| 43 |
device_map="auto"
|
| 44 |
)
|
| 45 |
prompt_b = f"Debate as Agent B: {topic}"
|
| 46 |
inputs_b = tokenizer_b(prompt_b, return_tensors="pt").to(model_b.device)
|
| 47 |
-
outputs_b = model_b.generate(**inputs_b, max_new_tokens=
|
| 48 |
arg_b = tokenizer_b.decode(outputs_b[0], skip_special_tokens=True)
|
| 49 |
# Judge
|
| 50 |
judge_prompt = (
|
|
@@ -54,15 +57,14 @@ def debate_agent(topic, agent_a_model, agent_b_model, judge_model):
|
|
| 54 |
f"Agent B says: {arg_b}\n"
|
| 55 |
f"Summarize both arguments and pick a winner (A or B) with a short justification."
|
| 56 |
)
|
| 57 |
-
tokenizer_j = AutoTokenizer.from_pretrained(judge_model
|
| 58 |
model_j = AutoModelForCausalLM.from_pretrained(
|
| 59 |
judge_model,
|
| 60 |
-
token=os.environ["HUGGINGFACE_API_KEY"],
|
| 61 |
load_in_4bit=True,
|
| 62 |
device_map="auto"
|
| 63 |
)
|
| 64 |
inputs_j = tokenizer_j(judge_prompt, return_tensors="pt").to(model_j.device)
|
| 65 |
-
outputs_j = model_j.generate(**inputs_j, max_new_tokens=
|
| 66 |
judge_summary = tokenizer_j.decode(outputs_j[0], skip_special_tokens=True)
|
| 67 |
return {
|
| 68 |
"Agent A": arg_a,
|
|
|
|
| 10 |
"gradio"
|
| 11 |
)
|
| 12 |
|
| 13 |
+
app = modal.App("agentic-demo", image=image)
|
| 14 |
|
| 15 |
ALL_MODELS = [
|
|
|
|
|
|
|
| 16 |
"Qwen/Qwen-72B",
|
| 17 |
+
"deepseek-ai/deepseek-llm-67b-base",
|
| 18 |
+
"openchat/openchat-3.5-1210",
|
| 19 |
+
"microsoft/phi-2",
|
| 20 |
+
"google/gemma-7b",
|
| 21 |
+
"01-ai/Yi-34B",
|
| 22 |
+
"upstage/SOLAR-10.7B-v1.0",
|
| 23 |
+
"microsoft/Orca-2-13b",
|
| 24 |
+
"lmsys/vicuna-13b-v1.5"
|
| 25 |
]
|
| 26 |
|
| 27 |
def debate_agent(topic, agent_a_model, agent_b_model, judge_model):
|
| 28 |
if len({agent_a_model, agent_b_model, judge_model}) < 3:
|
| 29 |
return {"error": "Please select three different models."}
|
| 30 |
# Agent A
|
| 31 |
+
tokenizer_a = AutoTokenizer.from_pretrained(agent_a_model)
|
| 32 |
model_a = AutoModelForCausalLM.from_pretrained(
|
| 33 |
agent_a_model,
|
|
|
|
| 34 |
load_in_4bit=True,
|
| 35 |
device_map="auto"
|
| 36 |
)
|
| 37 |
prompt_a = f"Debate as Agent A: {topic}"
|
| 38 |
inputs_a = tokenizer_a(prompt_a, return_tensors="pt").to(model_a.device)
|
| 39 |
+
outputs_a = model_a.generate(**inputs_a, max_new_tokens=10000)
|
| 40 |
arg_a = tokenizer_a.decode(outputs_a[0], skip_special_tokens=True)
|
| 41 |
# Agent B
|
| 42 |
+
tokenizer_b = AutoTokenizer.from_pretrained(agent_b_model)
|
| 43 |
model_b = AutoModelForCausalLM.from_pretrained(
|
| 44 |
agent_b_model,
|
|
|
|
| 45 |
load_in_4bit=True,
|
| 46 |
device_map="auto"
|
| 47 |
)
|
| 48 |
prompt_b = f"Debate as Agent B: {topic}"
|
| 49 |
inputs_b = tokenizer_b(prompt_b, return_tensors="pt").to(model_b.device)
|
| 50 |
+
outputs_b = model_b.generate(**inputs_b, max_new_tokens=10000)
|
| 51 |
arg_b = tokenizer_b.decode(outputs_b[0], skip_special_tokens=True)
|
| 52 |
# Judge
|
| 53 |
judge_prompt = (
|
|
|
|
| 57 |
f"Agent B says: {arg_b}\n"
|
| 58 |
f"Summarize both arguments and pick a winner (A or B) with a short justification."
|
| 59 |
)
|
| 60 |
+
tokenizer_j = AutoTokenizer.from_pretrained(judge_model)
|
| 61 |
model_j = AutoModelForCausalLM.from_pretrained(
|
| 62 |
judge_model,
|
|
|
|
| 63 |
load_in_4bit=True,
|
| 64 |
device_map="auto"
|
| 65 |
)
|
| 66 |
inputs_j = tokenizer_j(judge_prompt, return_tensors="pt").to(model_j.device)
|
| 67 |
+
outputs_j = model_j.generate(**inputs_j, max_new_tokens=10000)
|
| 68 |
judge_summary = tokenizer_j.decode(outputs_j[0], skip_special_tokens=True)
|
| 69 |
return {
|
| 70 |
"Agent A": arg_a,
|