sitwala's picture
End of training
fa9af28 verified
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- sitwala/whisper-small-lwazi-pitori
metrics:
- wer
model-index:
- name: Whisper whisper-small lwazi multilingual
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Lwazi_asr_multilingual
type: sitwala/whisper-small-lwazi-pitori
args: 'split: test'
metrics:
- name: Wer
type: wer
value: 170.73170731707316
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/dsfsi/za-next-voices/runs/nxx6dwka)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/dsfsi/za-next-voices/runs/nxx6dwka)
# Whisper whisper-small lwazi multilingual
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Lwazi_asr_multilingual dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6640
- Wer Ortho: 117.0732
- Wer: 170.7317
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 150
- training_steps: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:--------:|
| 2.4105 | 50.0 | 50 | 2.6640 | 117.0732 | 170.7317 |
### Framework versions
- Transformers 4.52.0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.4