File size: 2,421 Bytes
fa9af28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- sitwala/whisper-small-lwazi-pitori
metrics:
- wer
model-index:
- name: Whisper whisper-small lwazi multilingual
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Lwazi_asr_multilingual
      type: sitwala/whisper-small-lwazi-pitori
      args: 'split: test'
    metrics:
    - name: Wer
      type: wer
      value: 170.73170731707316
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/dsfsi/za-next-voices/runs/nxx6dwka)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/dsfsi/za-next-voices/runs/nxx6dwka)
# Whisper whisper-small lwazi multilingual

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Lwazi_asr_multilingual dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6640
- Wer Ortho: 117.0732
- Wer: 170.7317

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 150
- training_steps: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer      |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:--------:|
| 2.4105        | 50.0  | 50   | 2.6640          | 117.0732  | 170.7317 |


### Framework versions

- Transformers 4.52.0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.4