|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: bert-small-IpadicUnigram2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-small-IpadicUnigram2 |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2725 |
|
- Accuracy: 0.7233 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 3 |
|
- total_train_batch_size: 768 |
|
- total_eval_batch_size: 24 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.01 |
|
- num_epochs: 14.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:------:|:---------------:|:--------:| |
|
| 1.7647 | 1.0 | 69473 | 1.6172 | 0.6646 | |
|
| 1.6381 | 2.0 | 138946 | 1.4902 | 0.6853 | |
|
| 1.5804 | 3.0 | 208419 | 1.4355 | 0.6951 | |
|
| 1.5448 | 4.0 | 277892 | 1.4004 | 0.7008 | |
|
| 1.52 | 5.0 | 347365 | 1.3740 | 0.7058 | |
|
| 1.4963 | 6.0 | 416838 | 1.3564 | 0.7089 | |
|
| 1.485 | 7.0 | 486311 | 1.3398 | 0.7113 | |
|
| 1.4665 | 8.0 | 555784 | 1.3252 | 0.7138 | |
|
| 1.454 | 9.0 | 625257 | 1.3145 | 0.7158 | |
|
| 1.4447 | 10.0 | 694730 | 1.3027 | 0.7182 | |
|
| 1.4341 | 11.0 | 764203 | 1.2949 | 0.7192 | |
|
| 1.4266 | 12.0 | 833676 | 1.2861 | 0.7205 | |
|
| 1.4191 | 13.0 | 903149 | 1.2764 | 0.7224 | |
|
| 1.4118 | 14.0 | 972622 | 1.2725 | 0.7233 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.2 |
|
- Pytorch 1.12.0+cu116 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.12.1 |
|
|