schnell commited on
Commit
16d516e
1 Parent(s): 0c7ff65

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ model-index:
7
+ - name: bert-small-IpadicUnigram2
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # bert-small-IpadicUnigram2
15
+
16
+ This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 1.2725
19
+ - Accuracy: 0.7233
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0001
39
+ - train_batch_size: 256
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 3
44
+ - total_train_batch_size: 768
45
+ - total_eval_batch_size: 24
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.01
49
+ - num_epochs: 14.0
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:------:|:---------------:|:--------:|
55
+ | 1.7647 | 1.0 | 69473 | 1.6172 | 0.6646 |
56
+ | 1.6381 | 2.0 | 138946 | 1.4902 | 0.6853 |
57
+ | 1.5804 | 3.0 | 208419 | 1.4355 | 0.6951 |
58
+ | 1.5448 | 4.0 | 277892 | 1.4004 | 0.7008 |
59
+ | 1.52 | 5.0 | 347365 | 1.3740 | 0.7058 |
60
+ | 1.4963 | 6.0 | 416838 | 1.3564 | 0.7089 |
61
+ | 1.485 | 7.0 | 486311 | 1.3398 | 0.7113 |
62
+ | 1.4665 | 8.0 | 555784 | 1.3252 | 0.7138 |
63
+ | 1.454 | 9.0 | 625257 | 1.3145 | 0.7158 |
64
+ | 1.4447 | 10.0 | 694730 | 1.3027 | 0.7182 |
65
+ | 1.4341 | 11.0 | 764203 | 1.2949 | 0.7192 |
66
+ | 1.4266 | 12.0 | 833676 | 1.2861 | 0.7205 |
67
+ | 1.4191 | 13.0 | 903149 | 1.2764 | 0.7224 |
68
+ | 1.4118 | 14.0 | 972622 | 1.2725 | 0.7233 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.19.2
74
+ - Pytorch 1.12.0+cu116
75
+ - Datasets 2.9.0
76
+ - Tokenizers 0.12.1