metadata
library_name: transformers
license: cc-by-4.0
base_model: NazaGara/NER-fine-tuned-BETO
tags:
- generated_from_trainer
datasets:
- conll2002
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: NER-finetuning-BETO-actualizado
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2002
type: conll2002
config: es
split: validation
args: es
metrics:
- name: Precision
type: precision
value: 0.8385333636984742
- name: Recall
type: recall
value: 0.8460477941176471
- name: F1
type: f1
value: 0.8422738190552442
- name: Accuracy
type: accuracy
value: 0.9687422514257377
NER-finetuning-BETO-actualizado
This model is a fine-tuned version of NazaGara/NER-fine-tuned-BETO on the conll2002 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2642
- Precision: 0.8385
- Recall: 0.8460
- F1: 0.8423
- Accuracy: 0.9687
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0778 | 1.0 | 2081 | 0.1603 | 0.8164 | 0.8277 | 0.8220 | 0.9676 |
0.0608 | 2.0 | 4162 | 0.1756 | 0.8114 | 0.8136 | 0.8125 | 0.9640 |
0.0362 | 3.0 | 6243 | 0.1986 | 0.8236 | 0.8226 | 0.8231 | 0.9650 |
0.0277 | 4.0 | 8324 | 0.1904 | 0.8092 | 0.8359 | 0.8223 | 0.9665 |
0.0217 | 5.0 | 10405 | 0.1988 | 0.8137 | 0.8389 | 0.8261 | 0.9658 |
0.0146 | 6.0 | 12486 | 0.2298 | 0.8470 | 0.8536 | 0.8503 | 0.9684 |
0.0091 | 7.0 | 14567 | 0.2509 | 0.8315 | 0.8412 | 0.8363 | 0.9665 |
0.0058 | 8.0 | 16648 | 0.2375 | 0.8274 | 0.8435 | 0.8354 | 0.9688 |
0.0033 | 9.0 | 18729 | 0.2489 | 0.8349 | 0.8421 | 0.8385 | 0.9683 |
0.0023 | 10.0 | 20810 | 0.2642 | 0.8385 | 0.8460 | 0.8423 | 0.9687 |
Framework versions
- Transformers 4.51.2
- Pytorch 2.6.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1