--- library_name: transformers license: cc-by-4.0 base_model: NazaGara/NER-fine-tuned-BETO tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-BETO-actualizado results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.8385333636984742 - name: Recall type: recall value: 0.8460477941176471 - name: F1 type: f1 value: 0.8422738190552442 - name: Accuracy type: accuracy value: 0.9687422514257377 --- # NER-finetuning-BETO-actualizado This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.2642 - Precision: 0.8385 - Recall: 0.8460 - F1: 0.8423 - Accuracy: 0.9687 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0778 | 1.0 | 2081 | 0.1603 | 0.8164 | 0.8277 | 0.8220 | 0.9676 | | 0.0608 | 2.0 | 4162 | 0.1756 | 0.8114 | 0.8136 | 0.8125 | 0.9640 | | 0.0362 | 3.0 | 6243 | 0.1986 | 0.8236 | 0.8226 | 0.8231 | 0.9650 | | 0.0277 | 4.0 | 8324 | 0.1904 | 0.8092 | 0.8359 | 0.8223 | 0.9665 | | 0.0217 | 5.0 | 10405 | 0.1988 | 0.8137 | 0.8389 | 0.8261 | 0.9658 | | 0.0146 | 6.0 | 12486 | 0.2298 | 0.8470 | 0.8536 | 0.8503 | 0.9684 | | 0.0091 | 7.0 | 14567 | 0.2509 | 0.8315 | 0.8412 | 0.8363 | 0.9665 | | 0.0058 | 8.0 | 16648 | 0.2375 | 0.8274 | 0.8435 | 0.8354 | 0.9688 | | 0.0033 | 9.0 | 18729 | 0.2489 | 0.8349 | 0.8421 | 0.8385 | 0.9683 | | 0.0023 | 10.0 | 20810 | 0.2642 | 0.8385 | 0.8460 | 0.8423 | 0.9687 | ### Framework versions - Transformers 4.51.2 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1