BnW-vs-Colored-Detection
BnW-vs-Colored-Detection is an image classification vision-language encoder model fine-tuned from google/siglip2-base-patch16-224 for a single-label classification task. It is designed to distinguish between black & white and colored images using the SiglipForImageClassification architecture.
Classification Report:
precision recall f1-score support
B & W 0.9982 0.9996 0.9989 5000
Colored 0.9996 0.9982 0.9989 5000
accuracy 0.9989 10000
macro avg 0.9989 0.9989 0.9989 10000
weighted avg 0.9989 0.9989 0.9989 10000
The model categorizes images into 2 classes:
Class 0: "B & W"
Class 1: "Colored"
Install dependencies
!pip install -q transformers torch pillow gradio
Inference Code
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/BnW-vs-Colored-Detection" # Updated model name
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
def classify_bw_colored(image):
"""Predicts if an image is Black & White or Colored."""
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
labels = {
"0": "B & W", "1": "Colored"
}
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
return predictions
# Create Gradio interface
iface = gr.Interface(
fn=classify_bw_colored,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(label="Prediction Scores"),
title="BnW vs Colored Detection",
description="Upload an image to detect if it is Black & White or Colored."
)
if __name__ == "__main__":
iface.launch()
Intended Use:
The BnW-vs-Colored-Detection model is designed to classify images by color mode. Potential use cases include:
- Archive Organization: Separate historical B&W images from modern colored ones.
- Data Filtering: Preprocess image datasets by removing or labeling specific types.
- Digital Restoration: Assist in determining candidates for colorization.
- Search & Categorization: Enable efficient tagging and filtering in image libraries.
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for prithivMLmods/BnW-vs-Colored-Detection
Base model
google/siglip2-so400m-patch16-512