
prithivMLmods/BnW-vs-Colored-Detection
Image Classification
•
Updated
•
3
image
imagewidth (px) 121
8.68k
| label
class label 2
classes |
---|---|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
|
0B & W
|
BnW-vs-Colored-10K is a curated dataset of 10,000 images designed for binary image classification tasks distinguishing between black & white (BnW) and colored images. This dataset can be used for training models in visual recognition, restoration, or filtering pipelines involving grayscale and color detection.
B & W
(Black and White), Colored
Column | Type | Description |
---|---|---|
image | Image | Input image (JPEG format) |
label | Class | Binary label: B & W or Colored |
Label ID | Class Name |
---|---|
0 | B & W |
1 | Colored |
You can load the dataset using the datasets
library from Hugging Face:
from datasets import load_dataset
dataset = load_dataset("prithivMLmods/BnW-vs-Colored-10K")
To visualize an example:
import matplotlib.pyplot as plt
example = dataset["train"][0]
plt.imshow(example["image"])
plt.title(example["label"])
plt.axis("off")
plt.show()
This dataset is made available under the Apache 2.0 License.
Curated & Maintained by @prithivMLmods. For inquiries or contributions, please open an issue or submit a pull request.