Add Robotics tag and metadata (#1)
Browse files- Add Robotics tag and metadata (9f32e7c6db6bfae848612df947491b188c2dff8a)
Co-authored-by: Vaibhav Srivastav <[email protected]>
README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: lerobot
|
3 |
+
license: apache-2.0
|
4 |
+
pipeline_tag: robotics
|
5 |
+
tags:
|
6 |
+
- robotics
|
7 |
+
---
|
8 |
+
|
9 |
+
# Model Card for mobile_so100_test_100000
|
10 |
+
|
11 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
12 |
+
|
13 |
+
|
14 |
+
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
|
15 |
+
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
|
16 |
+
|
17 |
+
---
|
18 |
+
|
19 |
+
## How to Get Started with the Model
|
20 |
+
|
21 |
+
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
|
22 |
+
Below is the short version on how to train and run inference/eval:
|
23 |
+
|
24 |
+
### 1 Train from scratch
|
25 |
+
|
26 |
+
```bash
|
27 |
+
python lerobot/scripts/train.py --dataset.repo_id=${HF_USER}/<dataset> --policy.type=act --output_dir=outputs/train/<desired_policy_repo_id> --job_name=lerobot_training --policy.device=cuda --policy.repo_id=${HF_USER}/<desired_policy_repo_id>
|
28 |
+
--wandb.enable=true
|
29 |
+
```
|
30 |
+
|
31 |
+
*Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`.*
|
32 |
+
|
33 |
+
### 2 Evaluate the policy
|
34 |
+
|
35 |
+
```bash
|
36 |
+
python -m lerobot.record --robot.type=so100_follower --dataset.repo_id=<hf_user>/eval_<dataset> --policy.path=<hf_user>/<desired_policy_repo_id> --episodes=10
|
37 |
+
```
|
38 |
+
|
39 |
+
Prefix the dataset repo with **eval_** and supply `--policy.path` pointing to a local or hub checkpoint.
|
40 |
+
|
41 |
+
---
|