|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
base_model: mistralai/Mistral-7B-Instruct-v0.3 |
|
datasets: |
|
- generator |
|
metrics: |
|
- bleu |
|
- rouge |
|
model-index: |
|
- name: Mistral-7B-Instruct-v0.3-advisegpt-v0.1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Mistral-7B-Instruct-v0.3-advisegpt-v0.1 |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the generator dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0762 |
|
- Bleu: {'bleu': 0.9585152983456746, 'precisions': [0.9779106264925121, 0.9626412004947897, 0.951895206199588, 0.9430042745426802], 'brevity_penalty': 0.999729358235579, 'length_ratio': 0.9997293948524543, 'translation_length': 1289353, 'reference_length': 1289702} |
|
- Rouge: {'rouge1': 0.9761616288162651, 'rouge2': 0.9590944581779459, 'rougeL': 0.9748018206627191, 'rougeLsum': 0.9758991028742771} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 3 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 10 |
|
- total_train_batch_size: 30 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Bleu | Validation Loss | Rouge | |
|
|:-------------:|:------:|:----:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------:|:---------------------------------------------------------------------------------------------------------------------------:| |
|
| 0.0675 | 0.9998 | 809 | {'bleu': 0.9495787144110293, 'brevity_penalty': 0.9993236461934566, 'length_ratio': 0.9993238748175935, 'precisions': [0.9735806894625358, 0.9547064588389024, 0.9417775802515341, 0.9313417436570839], 'reference_length': 1289702, 'translation_length': 1288830} | 0.0936 | {'rouge1': 0.9713550622229471, 'rouge2': 0.9502301622796694, 'rougeL': 0.9691228372678113, 'rougeLsum': 0.9708685856330016} | |
|
| 0.0548 | 1.9998 | 1618 | 0.0771 | {'bleu': 0.9571495232321637, 'precisions': [0.9773150683231548, 0.9614637013631232, 0.95029828201407, 0.9410538932261553], 'brevity_penalty': 0.9996991100504438, 'length_ratio': 0.9996991553087458, 'translation_length': 1289314, 'reference_length': 1289702}| {'rouge1': 0.9755343391324649, 'rouge2': 0.9577790978374392, 'rougeL': 0.9740177474237091, 'rougeLsum': 0.9752585254668996} | |
|
| 0.0439 | 2.9995 | 2427 | 0.0762 | {'bleu': 0.9585152983456746, 'precisions': [0.9779106264925121, 0.9626412004947897, 0.951895206199588, 0.9430042745426802], 'brevity_penalty': 0.999729358235579, 'length_ratio': 0.9997293948524543, 'translation_length': 1289353, 'reference_length': 1289702}| {'rouge1': 0.9761616288162651, 'rouge2': 0.9590944581779459, 'rougeL': 0.9748018206627191, 'rougeLsum': 0.9758991028742771} | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |