ninyx commited on
Commit
a6814b6
1 Parent(s): 16db563

Model save

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - trl
6
+ - sft
7
+ - generated_from_trainer
8
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
9
+ datasets:
10
+ - generator
11
+ metrics:
12
+ - bleu
13
+ - rouge
14
+ model-index:
15
+ - name: Mistral-7B-Instruct-v0.3-advisegpt-v0.1
16
+ results: []
17
+ ---
18
+
19
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
20
+ should probably proofread and complete it, then remove this comment. -->
21
+
22
+ # Mistral-7B-Instruct-v0.3-advisegpt-v0.1
23
+
24
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the generator dataset.
25
+ It achieves the following results on the evaluation set:
26
+ - Loss: 0.0762
27
+ - Bleu: {'bleu': 0.9585152983456746, 'precisions': [0.9779106264925121, 0.9626412004947897, 0.951895206199588, 0.9430042745426802], 'brevity_penalty': 0.999729358235579, 'length_ratio': 0.9997293948524543, 'translation_length': 1289353, 'reference_length': 1289702}
28
+ - Rouge: {'rouge1': 0.9761616288162651, 'rouge2': 0.9590944581779459, 'rougeL': 0.9748018206627191, 'rougeLsum': 0.9758991028742771}
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 3
49
+ - eval_batch_size: 1
50
+ - seed: 42
51
+ - gradient_accumulation_steps: 10
52
+ - total_train_batch_size: 30
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: cosine
55
+ - num_epochs: 3
56
+ - mixed_precision_training: Native AMP
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Bleu | Validation Loss | Rouge |
61
+ |:-------------:|:------:|:----:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------:|:---------------------------------------------------------------------------------------------------------------------------:|
62
+ | 0.0675 | 0.9998 | 809 | {'bleu': 0.9495787144110293, 'brevity_penalty': 0.9993236461934566, 'length_ratio': 0.9993238748175935, 'precisions': [0.9735806894625358, 0.9547064588389024, 0.9417775802515341, 0.9313417436570839], 'reference_length': 1289702, 'translation_length': 1288830} | 0.0936 | {'rouge1': 0.9713550622229471, 'rouge2': 0.9502301622796694, 'rougeL': 0.9691228372678113, 'rougeLsum': 0.9708685856330016} |
63
+ | 0.0548 | 1.9998 | 1618 | 0.0771 | {'bleu': 0.9571495232321637, 'precisions': [0.9773150683231548, 0.9614637013631232, 0.95029828201407, 0.9410538932261553], 'brevity_penalty': 0.9996991100504438, 'length_ratio': 0.9996991553087458, 'translation_length': 1289314, 'reference_length': 1289702}| {'rouge1': 0.9755343391324649, 'rouge2': 0.9577790978374392, 'rougeL': 0.9740177474237091, 'rougeLsum': 0.9752585254668996} |
64
+ | 0.0439 | 2.9995 | 2427 | 0.0762 | {'bleu': 0.9585152983456746, 'precisions': [0.9779106264925121, 0.9626412004947897, 0.951895206199588, 0.9430042745426802], 'brevity_penalty': 0.999729358235579, 'length_ratio': 0.9997293948524543, 'translation_length': 1289353, 'reference_length': 1289702}| {'rouge1': 0.9761616288162651, 'rouge2': 0.9590944581779459, 'rougeL': 0.9748018206627191, 'rougeLsum': 0.9758991028742771} |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - PEFT 0.10.0
70
+ - Transformers 4.40.2
71
+ - Pytorch 2.3.0+cu121
72
+ - Datasets 2.19.1
73
+ - Tokenizers 0.19.1