Model save
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- trl
|
6 |
+
- sft
|
7 |
+
- generated_from_trainer
|
8 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.3
|
9 |
+
datasets:
|
10 |
+
- generator
|
11 |
+
metrics:
|
12 |
+
- bleu
|
13 |
+
- rouge
|
14 |
+
model-index:
|
15 |
+
- name: Mistral-7B-Instruct-v0.3-advisegpt-v0.1
|
16 |
+
results: []
|
17 |
+
---
|
18 |
+
|
19 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
20 |
+
should probably proofread and complete it, then remove this comment. -->
|
21 |
+
|
22 |
+
# Mistral-7B-Instruct-v0.3-advisegpt-v0.1
|
23 |
+
|
24 |
+
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the generator dataset.
|
25 |
+
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: 0.0762
|
27 |
+
- Bleu: {'bleu': 0.9585152983456746, 'precisions': [0.9779106264925121, 0.9626412004947897, 0.951895206199588, 0.9430042745426802], 'brevity_penalty': 0.999729358235579, 'length_ratio': 0.9997293948524543, 'translation_length': 1289353, 'reference_length': 1289702}
|
28 |
+
- Rouge: {'rouge1': 0.9761616288162651, 'rouge2': 0.9590944581779459, 'rougeL': 0.9748018206627191, 'rougeLsum': 0.9758991028742771}
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 3
|
49 |
+
- eval_batch_size: 1
|
50 |
+
- seed: 42
|
51 |
+
- gradient_accumulation_steps: 10
|
52 |
+
- total_train_batch_size: 30
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: cosine
|
55 |
+
- num_epochs: 3
|
56 |
+
- mixed_precision_training: Native AMP
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Bleu | Validation Loss | Rouge |
|
61 |
+
|:-------------:|:------:|:----:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------:|:---------------------------------------------------------------------------------------------------------------------------:|
|
62 |
+
| 0.0675 | 0.9998 | 809 | {'bleu': 0.9495787144110293, 'brevity_penalty': 0.9993236461934566, 'length_ratio': 0.9993238748175935, 'precisions': [0.9735806894625358, 0.9547064588389024, 0.9417775802515341, 0.9313417436570839], 'reference_length': 1289702, 'translation_length': 1288830} | 0.0936 | {'rouge1': 0.9713550622229471, 'rouge2': 0.9502301622796694, 'rougeL': 0.9691228372678113, 'rougeLsum': 0.9708685856330016} |
|
63 |
+
| 0.0548 | 1.9998 | 1618 | 0.0771 | {'bleu': 0.9571495232321637, 'precisions': [0.9773150683231548, 0.9614637013631232, 0.95029828201407, 0.9410538932261553], 'brevity_penalty': 0.9996991100504438, 'length_ratio': 0.9996991553087458, 'translation_length': 1289314, 'reference_length': 1289702}| {'rouge1': 0.9755343391324649, 'rouge2': 0.9577790978374392, 'rougeL': 0.9740177474237091, 'rougeLsum': 0.9752585254668996} |
|
64 |
+
| 0.0439 | 2.9995 | 2427 | 0.0762 | {'bleu': 0.9585152983456746, 'precisions': [0.9779106264925121, 0.9626412004947897, 0.951895206199588, 0.9430042745426802], 'brevity_penalty': 0.999729358235579, 'length_ratio': 0.9997293948524543, 'translation_length': 1289353, 'reference_length': 1289702}| {'rouge1': 0.9761616288162651, 'rouge2': 0.9590944581779459, 'rougeL': 0.9748018206627191, 'rougeLsum': 0.9758991028742771} |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- PEFT 0.10.0
|
70 |
+
- Transformers 4.40.2
|
71 |
+
- Pytorch 2.3.0+cu121
|
72 |
+
- Datasets 2.19.1
|
73 |
+
- Tokenizers 0.19.1
|