File size: 5,147 Bytes
4b3bdeb
 
6048812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b3bdeb
 
22766da
4b3bdeb
7c425f1
 
4f0f9d9
 
c6991ef
7c425f1
 
 
 
 
 
 
 
 
 
 
 
4b3bdeb
 
d790ea4
 
 
 
4b3bdeb
 
d790ea4
4b3bdeb
d790ea4
04a1d40
 
4b3bdeb
d790ea4
4b3bdeb
6048812
 
51403e9
6048812
 
 
 
 
 
3fe1b49
 
 
 
51403e9
3fe1b49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6048812
 
 
 
 
4b3bdeb
 
 
 
 
d790ea4
 
 
 
 
4b3bdeb
 
 
d790ea4
 
 
4b3bdeb
c33f417
d790ea4
4b3bdeb
d790ea4
4b3bdeb
d790ea4
 
4b3bdeb
 
 
d790ea4
 
 
 
4b3bdeb
 
d790ea4
4b3bdeb
d790ea4
4b3bdeb
 
 
 
 
 
d790ea4
4b3bdeb
 
 
d790ea4
4b3bdeb
 
 
d790ea4
4b3bdeb
d790ea4
4b3bdeb
d790ea4
4b3bdeb
d790ea4
4b3bdeb
 
 
d790ea4
 
 
 
 
 
4b3bdeb
 
 
d790ea4
 
4b3bdeb
 
 
 
 
d790ea4
4b3bdeb
 
d790ea4
4b3bdeb
d790ea4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
library_name: transformers
tags:
- text-summarization
- text-generation
- clinical-report-summarization
- document-summarization
license: mit
language:
- en
- fr
- pt
- es
metrics:
- bertscore
- rouge
base_model:
- Qwen/Qwen2.5-0.5B-Instruct
pipeline_tag: text-generation
---

# Model Details

> **Update 13'th July 2025**: Added [video review on youtube](https://youtu.be/uOAiUvLghuE)

This model represent a fine-tuned version of `Qwen/Qwen2.5-0.5B-Instruct` on [MultiClinSum](https://zenodo.org/records/15463353) training data 
for [BioASQ-2025](http://bioasq.org/) Workshop / [CLEF 2025](https://clef2025.clef-initiative.eu/).

This model represent a baseline for the `distil` version:

https://huggingface.co/nicolay-r/qwen25-05b-multiclinsum-distil

### Video Overview

<div align="center">

  [![](https://markdown-videos-api.jorgenkh.no/youtube/uOAiUvLghuE)](https://youtu.be/uOAiUvLghuE)

</div>

### Model Description

- **Model type:** Decoder-based Model
- **Language(s) (NLP):** Supported by Qwen2.5 + fine-tuned on summarries written in `en`, `fr`, `pt`, `es`
- **License:** MIT
- **Finetuned from model [optional]:** https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct

### Model Sources [optional]
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1TXGaz39o73nBucEQw12gbad7Tw11j2Ol?usp=sharing)

- **Repository:** https://github.com/nicolay-r/distil-tuning-llm
- **Paper:** **TBA**
- **Demo:** https://colab.research.google.com/drive/1TXGaz39o73nBucEQw12gbad7Tw11j2Ol?usp=sharing

## Usage

We use [bulk-chain](https://github.com/nicolay-r/bulk-chain) for inference with the Qwen2 provider based on `transformers` **pipelines API**.

**Provider** `huggingface_qwen.py`: https://github.com/nicolay-r/nlp-thirdgate/blob/9e46629792e9a53871710884f7b9e2fe42666aa7/llm/transformers_qwen2.py

```python
from bulk_chain.api import iter_content
from bulk_chain.core.utils import dynamic_init

content_it = iter_content(
  schema={"schema": [
      {"prompt": "Summarize: {input}", "out": "summary"}]
  },
  llm=dynamic_init(
    class_filepath="huggingface_qwen.py",
    class_name="Qwen2")(
      api_token="YOUR_HF_API_KEY_GOES_HERE",
      model_name="nicolay-r/qwen25-05b-multiclinsum-standard",
      temp=0.1,
      use_bf16=True,
      max_new_tokens=args.max_tokens,
      device=args.device
  ),
  infer_mode="batch",
  batch_size=4,
  return_mode="record",
  # INPUT TEXTS:
  input_dicts_it=[
     {"input": "A patient 62 years old with ..."}
  ],
)

for record in content_it:
  # here is the result dictionary that includes summary.
  print(record["summary"])
```

## Training Details

### Training Data

* **MultiClinSum**
  * We use the [following script](https://github.com/nicolay-r/distill-tuning-llm/blob/main/resources/download_dataset.sh) for downloading datasets.
  * **Web**: https://temu.bsc.es/multiclinsum 
  * **Data**: https://zenodo.org/records/15463353
  * **BioASQ**: http://bioasq.org/ 

### Training Procedure

The training procedure involves:
1. Preparation of the `rationale` for summaries distillation.
2. Launch of the **fine-tuning** process.

**Fine-tuning:** Please follow this script for using [`MultiClinSum` dataset](https://zenodo.org/records/15463353) for fine-tuning at GoogleColab A100 (40GB VRAM) + 80GB RAM:
  * https://github.com/nicolay-r/distil-tuning-llm/blob/master/distil_ft_qwen25_05b_A100-40GB_80GB_std.sh

#### Preprocessing [optional]

Refer to the following script for the `fine-tuning` pre-processing:
* https://github.com/nicolay-r/distil-tuning-llm/blob/master/resources/make_dataset_mult.py

#### Training Hyperparameters

We refer to the original parameters here:
  * https://github.com/QwenLM/Qwen2.5-VL/tree/main/qwen-vl-finetune
And use the following script:
  * https://github.com/nicolay-r/distil-tuning-llm/blob/master/distil_ft_qwen25_05b_A100-40GB_80GB_std.sh


#### Speeds, Sizes, Times [optional]

The fine-tuning procedure for `3` epochs takes around `~1 hour` using the GoogleColab A100.

## Evaluation


#### Testing Data

We use evaluation split of the 20 documents out of the small portion the available training data across all the languages: `en`, `fr`, `pt`, `es`

#### Metrics

In this evaluation we use onle `rouge` score.

### Results

We launch 3 individual fine-tuning processes for `distil` and `standard` versions to showcase results variation among multiple runs.

> **Figure**: the obtained results for this model correspond to the `standard` version 🟠

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/6wZ_klTgm-SmvZCGJOaC5.png)

#### Summary

#### Hardware

We experiment with model inference and launching using GoolgeColab Notebook service and related resources:
* Fine-tuning: A100 (40GB)
* Inference: T4 (16GB)

Follow the Google Codalab Notebook at the repository:
* https://github.com/nicolay-r/distil-tuning-llm

#### Software

This is an official repository for this card: 
* https://github.com/nicolay-r/distil-tuning-llm

## Citation [optional]

**BibTeX:**

> **TO BE ADDED**


## Model Card Authors 

Nicolay Rusnachenko