Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,22 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
@@ -8,7 +24,6 @@ tags: []
|
|
8 |
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
10 |
|
11 |
-
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
@@ -35,19 +50,42 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
@@ -102,7 +140,8 @@ Use the code below to get started with the model.
|
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
|
|
106 |
|
107 |
### Testing Data, Factors & Metrics
|
108 |
|
@@ -132,24 +171,6 @@ Use the code below to get started with the model.
|
|
132 |
|
133 |
|
134 |
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
## Technical Specifications [optional]
|
154 |
|
155 |
### Model Architecture and Objective
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- text-summarization
|
5 |
+
- text-generation
|
6 |
+
- clinical-report-summarization
|
7 |
+
- document-summarization
|
8 |
+
license: mit
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
- fr
|
12 |
+
- pt
|
13 |
+
- es
|
14 |
+
metrics:
|
15 |
+
- bertscore
|
16 |
+
- rouge
|
17 |
+
base_model:
|
18 |
+
- Qwen/Qwen2.5-0.5B-Instruct
|
19 |
+
pipeline_tag: text-generation
|
20 |
---
|
21 |
|
22 |
# Model Card for Model ID
|
|
|
24 |
<!-- Provide a quick summary of what the model is/does. -->
|
25 |
|
26 |
|
|
|
27 |
## Model Details
|
28 |
|
29 |
### Model Description
|
|
|
50 |
|
51 |
## Uses
|
52 |
|
|
|
|
|
53 |
### Direct Use
|
54 |
|
55 |
+
We use [bulk-chain](https://github.com/nicolay-r/bulk-chain) for inference with the Qwen2 provider based on `transformers` **pipelines API**.
|
56 |
+
|
57 |
+
**Provider**: https://github.com/nicolay-r/nlp-thirdgate/blob/9e46629792e9a53871710884f7b9e2fe42666aa7/llm/transformers_qwen2.py
|
58 |
+
|
59 |
+
```python
|
60 |
+
from bulk_chain.api import iter_content
|
61 |
+
from bulk_chain.core.utils import dynamic_init
|
62 |
+
|
63 |
+
content_it = iter_content(
|
64 |
+
schema={"schema": [
|
65 |
+
{"prompt": "Summarize: {input}", "out": "summary"}]
|
66 |
+
},
|
67 |
+
llm=dynamic_init(class_filepath="providers/huggingface_qwen.py", class_name="Qwen2")(
|
68 |
+
api_token="YOUR_HF_API_KEY_GOES_HERE",
|
69 |
+
model_name="nicolay-r/qwen25-05b-multiclinsum-standard",
|
70 |
+
temp=0.1,
|
71 |
+
use_bf16=True,
|
72 |
+
max_new_tokens=args.max_tokens,
|
73 |
+
device=args.device
|
74 |
+
),
|
75 |
+
infer_mode="batch",
|
76 |
+
batch_size=4,
|
77 |
+
return_mode="record",
|
78 |
+
// INPUT TEXTS:
|
79 |
+
input_dicts_it=[
|
80 |
+
{"input": "A patient 62 years old with ..."}
|
81 |
+
],
|
82 |
+
)
|
83 |
+
|
84 |
+
for record in content_it:
|
85 |
+
# here is the result dictionary that includes summary.
|
86 |
+
print(record["summary"])
|
87 |
+
```
|
88 |
|
|
|
89 |
|
90 |
### Out-of-Scope Use
|
91 |
|
|
|
140 |
|
141 |
## Evaluation
|
142 |
|
143 |
+

|
144 |
+
|
145 |
|
146 |
### Testing Data, Factors & Metrics
|
147 |
|
|
|
171 |
|
172 |
|
173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
## Technical Specifications [optional]
|
175 |
|
176 |
### Model Architecture and Objective
|