Update README.md
Browse files
README.md
CHANGED
@@ -21,36 +21,23 @@ pipeline_tag: text-generation
|
|
21 |
|
22 |
# Model Card for Model ID
|
23 |
|
24 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
25 |
-
|
26 |
-
|
27 |
## Model Details
|
28 |
|
29 |
### Model Description
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
- **Developed by:** [More Information Needed]
|
36 |
-
- **Funded by [optional]:** [More Information Needed]
|
37 |
-
- **Shared by [optional]:** [More Information Needed]
|
38 |
-
- **Model type:** [More Information Needed]
|
39 |
-
- **Language(s) (NLP):** [More Information Needed]
|
40 |
-
- **License:** [More Information Needed]
|
41 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
42 |
|
43 |
### Model Sources [optional]
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
- **
|
48 |
-
- **Paper [optional]:** [More Information Needed]
|
49 |
-
- **Demo [optional]:** [More Information Needed]
|
50 |
-
|
51 |
-
## Uses
|
52 |
|
53 |
-
|
54 |
|
55 |
We use [bulk-chain](https://github.com/nicolay-r/bulk-chain) for inference with the Qwen2 provider based on `transformers` **pipelines API**.
|
56 |
|
@@ -88,135 +75,84 @@ for record in content_it:
|
|
88 |
print(record["summary"])
|
89 |
```
|
90 |
|
91 |
-
|
92 |
-
### Out-of-Scope Use
|
93 |
-
|
94 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
95 |
-
|
96 |
-
[More Information Needed]
|
97 |
-
|
98 |
-
## Bias, Risks, and Limitations
|
99 |
-
|
100 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
101 |
-
|
102 |
-
[More Information Needed]
|
103 |
-
|
104 |
-
### Recommendations
|
105 |
-
|
106 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
107 |
-
|
108 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
109 |
-
|
110 |
-
## How to Get Started with the Model
|
111 |
-
|
112 |
-
Use the code below to get started with the model.
|
113 |
-
|
114 |
-
[More Information Needed]
|
115 |
-
|
116 |
## Training Details
|
117 |
|
118 |
### Training Data
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
123 |
|
124 |
### Training Procedure
|
125 |
|
126 |
-
|
|
|
|
|
127 |
|
128 |
-
|
|
|
129 |
|
130 |
-
|
131 |
|
|
|
|
|
132 |
|
133 |
#### Training Hyperparameters
|
134 |
|
135 |
-
|
|
|
|
|
|
|
136 |
|
137 |
-
#### Speeds, Sizes, Times [optional]
|
138 |
|
139 |
-
|
140 |
|
141 |
-
|
142 |
|
143 |
## Evaluation
|
144 |
|
145 |
-

|
146 |
-
|
147 |
-
|
148 |
-
### Testing Data, Factors & Metrics
|
149 |
|
150 |
#### Testing Data
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
[More Information Needed]
|
155 |
-
|
156 |
-
#### Factors
|
157 |
-
|
158 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
159 |
-
|
160 |
-
[More Information Needed]
|
161 |
|
162 |
#### Metrics
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
[More Information Needed]
|
167 |
|
168 |
### Results
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
#### Summary
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
## Technical Specifications [optional]
|
177 |
|
178 |
-
|
179 |
|
180 |
-
[
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
[More Information Needed]
|
185 |
|
186 |
#### Hardware
|
187 |
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
#### Software
|
191 |
|
192 |
-
|
|
|
193 |
|
194 |
## Citation [optional]
|
195 |
|
196 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
197 |
-
|
198 |
**BibTeX:**
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
**APA:**
|
203 |
-
|
204 |
-
[More Information Needed]
|
205 |
-
|
206 |
-
## Glossary [optional]
|
207 |
-
|
208 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
209 |
-
|
210 |
-
[More Information Needed]
|
211 |
-
|
212 |
-
## More Information [optional]
|
213 |
-
|
214 |
-
[More Information Needed]
|
215 |
-
|
216 |
-
## Model Card Authors [optional]
|
217 |
|
218 |
-
[More Information Needed]
|
219 |
|
220 |
-
## Model Card
|
221 |
|
222 |
-
|
|
|
21 |
|
22 |
# Model Card for Model ID
|
23 |
|
|
|
|
|
|
|
24 |
## Model Details
|
25 |
|
26 |
### Model Description
|
27 |
|
28 |
+
- **Model type:** Decoder-based Model
|
29 |
+
- **Language(s) (NLP):** Supported by Qwen2.5 + fine-tuned on summarries written in `en`, `fr`, `pt`, `es`
|
30 |
+
- **License:** MIT
|
31 |
+
- **Finetuned from model [optional]:** https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
### Model Sources [optional]
|
34 |
+
[](https://colab.research.google.com/drive/1TXGaz39o73nBucEQw12gbad7Tw11j2Ol?usp=sharing)
|
35 |
|
36 |
+
- **Repository:** https://github.com/nicolay-r/distil-tuning-llm
|
37 |
+
- **Paper [optional]:** **TBA**
|
38 |
+
- **Demo [optional]:** https://colab.research.google.com/drive/1TXGaz39o73nBucEQw12gbad7Tw11j2Ol?usp=sharing
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
## Usage
|
41 |
|
42 |
We use [bulk-chain](https://github.com/nicolay-r/bulk-chain) for inference with the Qwen2 provider based on `transformers` **pipelines API**.
|
43 |
|
|
|
75 |
print(record["summary"])
|
76 |
```
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
## Training Details
|
79 |
|
80 |
### Training Data
|
81 |
|
82 |
+
* **MultiClinSum**
|
83 |
+
* We use the [following script](https://github.com/nicolay-r/distill-tuning-llm/blob/main/resources/download_dataset.sh) for downloading datasets.
|
84 |
+
* **Web**: https://temu.bsc.es/multiclinsum
|
85 |
+
* **Data**: https://zenodo.org/records/15463353
|
86 |
+
* **BioASQ**: http://bioasq.org/
|
87 |
|
88 |
### Training Procedure
|
89 |
|
90 |
+
The training procedure involves:
|
91 |
+
1. Preparation of the `rationale` for summaries distillation.
|
92 |
+
2. Launch of the **fine-tuning** process.
|
93 |
|
94 |
+
**Fine-tuning:** Please follow this script for using `MultiClinSum` dataset for fine-tuning at GoogleColab A100 (40GB VRAM) + 80GB RAM:
|
95 |
+
* https://github.com/nicolay-r/distil-tuning-llm/blob/master/distil_ft_qwen25_05b_A100-40GB_80GB_std.sh
|
96 |
|
97 |
+
#### Preprocessing [optional]
|
98 |
|
99 |
+
Refer to the following script for the `fine-tuning` pre-processing:
|
100 |
+
* https://github.com/nicolay-r/distil-tuning-llm/blob/master/resources/make_dataset_mult.py
|
101 |
|
102 |
#### Training Hyperparameters
|
103 |
|
104 |
+
We refer to the original parameters here:
|
105 |
+
* https://github.com/QwenLM/Qwen2.5-VL/tree/main/qwen-vl-finetune
|
106 |
+
And use the following script:
|
107 |
+
* https://github.com/nicolay-r/distil-tuning-llm/blob/master/distil_ft_qwen25_05b_A100-40GB_80GB_std.sh
|
108 |
|
|
|
109 |
|
110 |
+
#### Speeds, Sizes, Times [optional]
|
111 |
|
112 |
+
The fine-tuning procedure for `3` epochs takes around `~1 hour` using the GoogleColab A100.
|
113 |
|
114 |
## Evaluation
|
115 |
|
|
|
|
|
|
|
|
|
116 |
|
117 |
#### Testing Data
|
118 |
|
119 |
+
We use evaluation split of the 20 documents out of the small portion the available training data across all the languages: `en`, `fr`, `pt`, `es`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
#### Metrics
|
122 |
|
123 |
+
In this evaluation we use onle `rouge` score.
|
|
|
|
|
124 |
|
125 |
### Results
|
126 |
|
127 |
+
We launch 3 individual fine-tuning processes for `distil` and `standard` versions to showcase results variation among multiple runs.
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
> **Figure**: the obtained results for this model correspond to the `standard` version 🟠
|
130 |
|
131 |
+

|
132 |
|
133 |
+
#### Summary
|
|
|
|
|
134 |
|
135 |
#### Hardware
|
136 |
|
137 |
+
We experiment with model inference and launching using GoolgeColab Notebook service and related resources:
|
138 |
+
* Fine-tuning: A100 (40GB)
|
139 |
+
* Inference: T4 (16GB)
|
140 |
+
|
141 |
+
Follow the Google Codalab Notebook at the repository:
|
142 |
+
* https://github.com/nicolay-r/distil-tuning-llm
|
143 |
|
144 |
#### Software
|
145 |
|
146 |
+
This is an official repository for this card:
|
147 |
+
* https://github.com/nicolay-r/distil-tuning-llm
|
148 |
|
149 |
## Citation [optional]
|
150 |
|
|
|
|
|
151 |
**BibTeX:**
|
152 |
|
153 |
+
> **TO BE ADDED**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
|
|
155 |
|
156 |
+
## Model Card Authors
|
157 |
|
158 |
+
Nicolay Rusnachenko
|