metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:145
- loss:SoftmaxLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: ιζ₯η
§ζγ«γγ¦
sentences:
- bright
- natural
- cozy
- source_sentence: θ¦γγ«γγ
sentences:
- natural
- cozy
- cozy
- source_sentence: θͺηΆε
γ欲γγ
sentences:
- cozy
- cozy
- cozy
- source_sentence: warm
sentences:
- bright
- cozy
- cozy
- source_sentence: θͺηΆγͺ
sentences:
- cozy
- cozy
- cozy
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the π€ Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'θͺηΆγͺ',
'cozy',
'cozy',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 145 training samples
- Columns:
premise
,hypothesis
, andlabel
- Approximate statistics based on the first 145 samples:
premise hypothesis label type string string int details - min: 3 tokens
- mean: 5.79 tokens
- max: 12 tokens
- min: 3 tokens
- mean: 3.0 tokens
- max: 3 tokens
- 0: ~26.21%
- 1: ~73.79%
- Samples:
premise hypothesis label 倩ηΆ
natural
1
ζ΄γγζ₯
natural
1
warm lighting
cozy
1
- Loss:
SoftmaxLoss
Evaluation Dataset
Unnamed Dataset
- Size: 37 evaluation samples
- Columns:
premise
,hypothesis
, andlabel
- Approximate statistics based on the first 37 samples:
premise hypothesis label type string string int details - min: 3 tokens
- mean: 6.46 tokens
- max: 10 tokens
- min: 3 tokens
- mean: 3.0 tokens
- max: 3 tokens
- 0: ~21.62%
- 1: ~78.38%
- Samples:
premise hypothesis label ζεΊ¦γι«γ
bright
1
γͺγ©γγ―γΉ
cozy
1
not natural
cozy
0
- Loss:
SoftmaxLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_eval_batch_size
: 16learning_rate
: 3e-05warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Trueddp_find_unused_parameters
: False
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Falseddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.1579 | 3 | 0.7116 | - |
0.3158 | 6 | 0.6971 | - |
0.4737 | 9 | 0.6825 | - |
0.6316 | 12 | 0.6449 | - |
0.7895 | 15 | 0.6452 | - |
0.9474 | 18 | 0.6618 | - |
1.0 | 19 | - | 0.5994 |
1.1053 | 21 | 0.6781 | - |
1.2632 | 24 | 0.5805 | - |
1.4211 | 27 | 0.6048 | - |
1.5789 | 30 | 0.5883 | - |
1.7368 | 33 | 0.6472 | - |
1.8947 | 36 | 0.6126 | - |
2.0 | 38 | - | 0.5694 |
2.0526 | 39 | 0.575 | - |
2.2105 | 42 | 0.6379 | - |
2.3684 | 45 | 0.6299 | - |
2.5263 | 48 | 0.5225 | - |
2.6842 | 51 | 0.5441 | - |
2.8421 | 54 | 0.6127 | - |
3.0 | 57 | 0.573 | 0.5617 |
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0
- PyTorch: 2.4.0
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers and SoftmaxLoss
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}